

Dinah: An Interface to Assist Non-Programmers with
Selecting Program Code Causing Graphical Output

Paul Gross1, Jennifer Yang2, and Caitlin Kelleher1
1Washington University in St. Louis

St. Louis, MO, USA
{grosspa, ckelleher}@cse.wustl.edu

2University of Washington
Seattle, WA, USA

jyang88@u.washington.edu

ABSTRACT
The web holds an abundance of source code examples with
the potential to become learning resources for any end-user.
However, for some end-users these examples may be
unusable. An example is unusable if a user cannot select the
code in the example that corresponds to their interests.
Research suggests that non-programmers struggle to
correctly select the code responsible for interesting output
functionality. In this paper we present Dinah: an interface to
support non-programmers with selecting code causing
graphical output. Dinah assists non-programmers by
providing concurrency support and in-context affordances
for statement replay and temporally based navigation.

Author Keywords
Non-programmer, end-user, search, navigation, selection,
localization, Dinah, Looking Glass, Storytelling Alice

ACM Classification Keywords
H.5.2. Information interfaces and presentation: Graphical
User Interfaces.

General Terms
Design, Experimentation, Human Factors.

INTRODUCTION
A wealth of freely available code resources exists on the
web. These resources range from code snippets in API
documentation to whole programs in code repositories.
Some repositories exist exclusively for end-user
environments (e.g., CoScripter [9]). In many domains, end-
users attempt to learn from or reuse code from these code
resources [2,3,13]. To effectively use examples from these
resources, users must be able to select the code in an
example that relates to their interests [4]. Research suggests
non-programmers struggle to select the related code either
unaided or with existing software support [4,5].

Software tools that enable non-programmers to select code
from programs with graphical output may help non-

programmers learn more effectively from code examples
they find on the web (e.g., code reuse [6]). We have chosen
to focus on graphical output from a program because our
observations of inexperienced end-users indicate that they
define their programming goals in terms of observable
output rather than implementation details. Further,
graphical output provides an approachable means by which
non-programmers can determine whether a program is
relevant to their needs.

In this paper we present Dinah: an interface which assists
non-programmers in selecting the code causing graphical
output. We first present Dinah’s interface with an example
usage scenario. We then discuss three guidelines for future
code selection systems’ design drawn from our formative
studies. We conclude with the limitations to our approach.

RELATED WORK
In software engineering, output localization [1] is
concerned with correlating output to the code responsible,
whether for a feature [14] or a fault [7]. Localization
software support can use a combination of static (e.g.,
source code artifacts [11]) and dynamic information (e.g.,
execution traces [8]) to create assistive visualizations. Some
tools use dynamic traces to create interactive graphical
output timelines that enable indexing of active code
sections at a point in time [4,8,10,12]. The Whyline [8]
enables debugging by asking why and why not questions
about program execution from recorded graphical output.
ZStep95 [10] enables stepping of graphical output changes.
The majority of these tools have been designed for
experienced users and not focused on non-programmers.

Research shows that non-programmers struggle to find the
code responsible for graphical output either alone [5] or
with a debugger [4]. An output history tool [4, 6] enabling
bi-directional search of a program’s output and code
significantly increased non-programmers' success relative
to a debugger [4]. However, users took nine minutes on
average to identify target code while struggling with
unfamiliar code constructs and concurrent execution [4].
Dinah offers new supports to assist non-programmers with
evaluating constructs and searching concurrent code.

LOOKING GLASS
We built Dinah into Looking Glass [6]: an IDE for creating
interactive 3D animated stories. Looking Glass uses drag-
and-drop based program construction to prevent users from

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2011, May 7–12, 2011, Vancouver, BC, Canada.
Copyright 2011 ACM 978-1-4503-0267-8/11/05....$10.00.

making syntax errors (Figure 1). The environment supports
many common programming constructs including methods,
conditionals, and loops. Parallel execution is supported and
frequently used in Looking Glass user programs [6].

A DINAH USAGE SCENARIO
To illustrate Dinah (Figure 2), we present a scenario where
a non-programmer selects code causing graphical output.
We present two solutions based on search strategies
employed by roughly half of each of our non-programmer
participants during our formative evaluation study (see
Formative Evaluation): bottom-up to select the code for the
output’s start and top-down to select the code for the end.

Scenario Problem
Imagine Sam, a non-programmer who wants to create a
story where a boy shakes a gift to find out what is inside.

Sam finds a program on the web where a lunch lady
“brainwashes” a student by raising her arms to his head and
then shaking it. Sam believes this example is relevant
because he can use the same brainwashing action to make
his boy shake the gift. Sam now wants to select the code for
the arms raising and the shaking to use it in his program.

Bottom-Up Solution for the Start
When Sam runs the brainwash program, Dinah appears
over the code. Sam pauses the program (Figure 2-1) when
the lunch lady begins raising her arms.

Sam looks at the Right Now pane (Figure 2-2) to see the
actions (i.e., methods) the lunch lady is doing. He notices
three actions: a delay and two touch actions. Sam clicks on
a touch action to open a statement context menu (Figure 2-
5), and replays the action. Replay shows the lunch lady
lifting her right arm, not both arms. Because this is part of
what Sam wants, Sam clicks on the action again to open the
context menu and locate the action in the program code.

Now Sam is looking at the code for the brainwash method.
Sam notices another touch action below the touch action he
located. He clicks on its Statement Button (Figure 2-4) for
replay which shows the lunch lady lifting only her left arm.

Sam wants both touch actions, but he does not know how to
replay them both at the same time. He clicks on the code
button for a touch action and chooses the HELP operation
(Figure 2-5). In the Help panel (Figure 2-6) Sam sees a tab
for what played at the same time. Sam chooses the section
referring to a block playing the touch action, and reads the
description of a Do Together block. Sam clicks on the

Figure 2. Dinah’s interface: (1) program playback controls, (2) Right Now pane showing currently executing methods by character
(i.e., object) or action name (i.e., method name), (3) History Pane indexing all executed methods by a target object, (4) Statement
Buttons indicating what is executing (yellow), has executed (green) and has not executed (gray), (5) Statement Context Menus to
breakdown a super-action (i.e., show method implementation), replay a statement, locate a statement (useful from Right Now,

History, and Help views), and (6) help to show the Help pane which explains execution semantics temporally around the statement.

Figure 1. Looking Glass IDE where a user programs by (1)
dragging a method, (2) dropping it into the code pane, and (3)

selecting parameters.

statement button in the help panel and replays the block to
see what it did. This shows the lunch lady raising both
arms. He uses the code button to locate the Do Together
block and now has the start of the code he wants.

Top-Down Solution for the End
Sam resumes the execution of the program and pauses once
the lunch lady begins shaking the student’s head.

Sam looks in the program code for yellow Statement
Buttons (Figure 2-4) to see what statements are currently
executing. Sam notices a brainwash action first and replays
the action. The replay begins too early with the lunch lady
walking toward the student before shaking his head. Sam
decides the code he is looking for is in the brainwash
action. He clicks on the brainwash code button and chooses
breakdown (Figure 2-5) to see the actions inside (i.e., the
implementation of the brainwash method).

Inside the brainwash action Sam sees the yellow code
button only on the charm action. Sam replays the charm
action and sees only the head shaking, not any other actions
that also occurred concurrently. Convinced, Sam decides he
has found the end of the code he wants.

FORMATIVE EVALUATION
Twenty-six non-programmers (university students and
staff) participated in our formative evaluation. Users first
completed two tutorials explaining basic software operation
and an example selection task. We provided documentation
to eighteen users. Finally we asked users to watch a video
showing graphical program output and asked participants to
mark the first and last statements causing the output.

Future Selection Tool Guidelines
In the following sections we present three guidelines drawn
from our formative evaluations and describe how they are
supported in Dinah.

Use alternative views to indicate concurrency happened and
enable independent thread replay to tease it apart.
Research suggests that non-programmers incorrectly
attribute output to concurrently executing code (i.e. “magic
code”) [5]. Prior guidelines propose independent thread
replay to overcome this problem [4]. We support reasoning
about concurrency in two ways: 1) we provide a replay
operation to help users isolate the output for a selected
statement and 2) we provide navigational affordances to
help users identify concurrent methods.

Dinah enables users to replay any execution of a statement.
Replay shows a statement’s output effect independent of
any other concurrent statements’ output. Dinah implements
replay by storing all graphical state changes and their
source execution thread. When a statement is replayed,
Dinah shows graphical state changes from the statement’s
execution thread, and any child threads for concurrent
blocks, over the statement’s execution period. Users often
utilized the replay operation (Figure 2-5) during their search

process. One user described its value: “you can see exactly
what each command means.”

We provide two navigational affordances to help users
identify concurrent methods. The Right Now pane (Figure
2-2) shows all methods executing in the running program or
at a selected point in time, organized either by 3D object or
by method names. One user described the Right Now pane
as: “kind of representative of all the code that’s going on,
all at once.” For concurrency identification in the program
code, when a user has identified a particular statement that
executes near the same time as their target output, they
often search for ways to navigate based on that statement.
Statement context menus include an item: HELP: What
happened around this action? (Figure 2-5). This operation
opens the Help pane (Figure 2-6) which includes tabs to
help users find methods that executed before, at the same
time, and after the selected statement. Users often begin the
search for a concurrent method by looking for statements
that executed “right before” or “next after” a statement. If
users fail to find their statement in the before or after tabs,
they often look at the methods occurring at the same time.
In the same time tab, the other actions section shows all
methods that executed concurrently, organized by 3D
object, during the selected statement’s execution period.

To implement these features Dinah maintains a dynamic
trace of the running program. The trace organizes statement
executions into a hierarchical execution tree (i.e., a block is
an internal node and a method executing in the block is a
child). Parent nodes sort children by execution period for
easy execution time search and temporal neighbor location.

Represent execution flow directly in the program code with
three states.
Previous research suggests non-programmers naturally
focus on reading code to search a program [5]. To
accommodate this focus, research also suggests providing
direct code interactions, such as thread independent replay,
to precisely evaluate statements [4]. To this end, we built a
replay operation (Figure 2-5) accessible through a button
displayed on each program statement (Figure 2-4). In the
initial design, all these buttons had the same appearance,
leading users to struggle to determine which statements
they could replay. As one user stated: “I was assuming I
could just play anything, like whatever anytime I want.”

To address this struggle, we experimented with variable
button colors based on execution status. All statement
buttons began as red. As a program ran, the buttons for in-
progress and completed statements became green. Although
a user correctly interpreted the colors, that user could not
identify why replay was disabled on red buttons. In the final
design there are three color states (Figure 2-4). Statement
buttons start gray. While a statement is running, the button
is yellow. When the statement completes, the button is
green. One user summarized this as “I think it’s kind of
showing how much has been completed.” In subsequent

user tests, we observed that the three-color status helped
users to understand which statements were replayable.

Provide intuitive program navigation affordances, or views
and operations to avoid navigating the call hierarchy.
A study of non-programmers naturally searching and
selecting code suggested that non-programmers do not infer
program structure, and consequently fail to fully navigate
programs [5]. We addressed this by enabling users to
directly locate statements from program output.
Additionally, we provide two navigation operations,
breakdown and HELP (Figure 2-5), because correct
selection may require navigating to find parent method calls
or blocks.

The locate operation (Figure 2-5) avoids navigational
difficulties by directly navigating to, and highlighting, a
statement in the program code. The Right Now (Figure 2-2),
History (Figure 2-3), and Help (Figure 2-6) panes all
summarize methods that are executing or have executed in
panes outside the program code. When a user chooses a
method execution from any of these panes, the locate
operation becomes available to show the corresponding
statement in the program code. This enables users to find
the statement without navigating the call hierarchy. We
observed many users incorporating locate in their searches.

The breakdown operation (Figure 2-5) navigates down the
call hierarchy by showing a method’s implementation. We
originally labeled this operation show details in tab because
previous users described an implementation as an “action’s
details.” However, users mentioned a desire to find a way
“to breakdown this task into the sub-tasks.” These users
dismissed show details in tab as unrelated to their goals.
We incorporated this intuitive explanation and later a user
expressed that they used breakdown very early in the
session because “it made sense at the time.”

The Help pane (Figure 2-6) offers time-based contextual
navigation for a selected statement and the ability to
navigate up the call hierarchy. We commonly observed
users using the locate operation and then getting stuck.
Moving up the call hierarchy or considering a parent block
was unintuitive. As one user stated, “it’s hard to think of
things happening on top of things... you think things happen
sequentially.” To support reasoning in the presence of
parental relationships, the Help pane presents temporal
execution information in three tabs: what executed before,
at the same time, and after the selected statement. The same
time tab includes sections for the parent method (i.e., super-
action as many users referred to its implementation as the
“sub-tasks” or “sub-code”) and one for the parent construct
block. The super-action section explains the super-action
execution relationship and enables a user to move up the
call hierarchy by using the locate operation. The parent
block section similarly explains the block’s execution
semantics (e.g., a loop) and offers the locate operation.

LIMITATIONS AND FUTURE WORK
Dinah’s features are limited to applications that can be
visualized graphically. Dinah’s approach and affordances
should scale to any other graphical environments with
appropriate execution time management mechanisms (e.g.,
graphical change stepping [10]), detection of code sections
related to graphical change, and efficient trace storage.

ACKNOWLEDGMENTS
The NSF funded this work through grant #0835438.

REFERENCES
1. Biggerstaff, T.J., Mitbander, B.G., and Webster, D.

The concept assignment problem in program
understanding. In Proc. ICSE, IEEE (1993), 482-498.

2. Brandt, J., Guo, P., Lewenstein, J., Dontcheva, M., and
Klemmer, S. Two studies of opportunistic
programming: interleaving web foraging, learning, and
writing code. In Proc. CHI, ACM (2009), 1589-1598.

3. Dorn, B. and Guzdial, M. Graphic designers who
program as informal computer science learners. In
Proc. ICER, ACM (2006), 127-134.

4. Gross, P. and Kelleher, C. Toward transforming freely
available source code into usable learning materials for
end-users. In Proc. PLATEAU, ACM (2010), In Press.

5. Gross, P. and Kelleher, C. Non-programmers
identifying functionality in unfamiliar code: strategies
and barriers. JVLC 21, 5 (2010), 263-276.

6. Gross, P., Herstand, M., Hodges, J., and Kelleher, C. A
code reuse interface for non-programmer middle
school students. In Proc. IUI, ACM (2010), 219-228.

7. Jones, J.A., Harrold, M.J., and Stasko, J. Visualization
of test information to assist fault localization. In Proc.
ICSE, ACM (2002), 467-477.

8. Ko, A.J. and Myers, B.A. Extracting and answering
why and why not questions about Java program output.
ACM Trans. on Soft. Eng. and Met. 20, 2 (2010), 1-36.

9. Leshed, G., Haber, E., Matthews, T., and Lau, T.
CoScripter: automating & sharing how-to knowledge
in the enterprise. In Proc. CHI, (2008), 1719-1728.

10. Lieberman, H. and Fry, C. ZStep 95: A Reversible,
Animated, Source Code Stepper. In J. Stasko, ed.,
Software Visualization: Programming as a Multimedia
Experience. MIT Press, Cambridge, MA, 1997.

11. Marcus, A., Rajlich, V., Buchta, J., Petrenko, M., and
Sergeyev, A. Static techniques for concept location in
object-oriented code. In Proc. IWPC, (2005), 33-42.

12. Oney, S. and Myers, B. FireCrystal: Understanding
interactive behaviors in dynamic web pages. In Proc.
VL/HCC, IEEE (2009), 105-108.

13. Rosson, M.B., Ballin, J., and Rode, J. Who, What, and
How: A Survey of Informal and Professional Web
Developers. In Proc. VL/HCC, IEEE (2005), 199-206.

14. Wilde, N. and Scully, M.C. Software reconnaissance:
Mapping program features to code. J. of Soft. Maint.:
Research and Practice 7, 1 (1995), 49-62.

