
An Investigation of Non-Programmers’ Performance 
with Tools to Support Output Localization 

Paul Gross and Caitlin Kelleher 
Dept. of Computer Science and Engineering 

Washington University in St. Louis 
St. Louis, MO, USA 

{grosspa, ckelleher}@cse.wustl.edu 

Jennifer Yang 
Computer Science and Engineering 
University of Washington Seattle 

Seattle, WA 
jyang88@u.washington.edu

 

Abstract— The wealth of code available through the web has the
potential to dramatically change the way we learn to program. 
This includes inexperienced programmers, who may struggle to 
find code in example programs that relate to observable program 
features. We present a comparative study of three tools for 
assisting non-programmers with finding program code 
corresponding to a program’s graphical output. From this study
we also identify a model which captures the goals inherent in 
non-programmers’ code search processes for this type of search 
task. Our results suggest a global pause marker may be an 
effective tool to support non-programmers’ search. 

Keywords-component; Code Search, Non-programmer, 
Localization, Strategy, Looking Glass, End-User programming 

I. INTRODUCTION

The wealth of code available through the web has the
potential to dramatically change the ways we learn to program 
and the ways we construct new programs. Already, end-user 
programmers rely on example source code they find on the web 
to learn new skills and construct new programs [1, 2, 12]. 
While experienced end-user programmers can make use of 
found source code, non-programmers may struggle to locate 
the code responsible for observable functionality of interest [5]. 
Tools that can help these users to easily identify the code 
responsible for target functionality may help transform freely 
available code into usable learning materials [4]. 

In this paper, we describe the results of a study comparing 
the performance of non-programmers attempting to find code 
causing graphical output in the Looking Glass IDE [6]. 
Participants completed tasks assisted by either one of three 
code search support tools [4, 6] or unassisted. We analyze 
participants’ common usage patterns to identify an underlying 
strategy model common to all conditions. This model may help 
to guide the design of future tools to support code search. 

II. RELATED WORK

Many tools that support output localization utilize run-time 
information to create visualizations for users. ZStep95 [9] 
enables stepping of recorded graphical output changes while 
highlighting the executed code. The WhyLine [8] answers 
users’ why and why not questions about a program’s recorded 
execution behavior. FireCrystal [10] highlights the code that 

executed in a webpage when the user exhibited an interactive 
behavior. Two tools evaluated in this paper, Hastings [4] and 
Dinah [6], use recorded program output to help non-
programmers localize code within animated stories. 

Novice output localization strategy research encompasses 
investigations into novice strategies for finding either features 
or faults in localization tasks. Katz [7] identified two general 
novice debugging strategies: forward reasoning (i.e., step-by-
step in code first), and backward reasoning (i.e., searching from 
incorrect output into code). Gross [5] noted non-programmers 
employed a similar bi-directional search. Romero [11] 
observed a novice strategy based on stepping execution and 
while checking a visualization. Fern [3] found end-user 
problem-solving strategies by using data mining techniques to 
identify frequent user interaction sequences. We employ a 
similar method to identify strategies by computing the 
frequency of interaction sequences that support user goals. 

III. METHODS

We conducted a between-subjects study of non-
programmers performance on output localization tasks either 
without code search support or using one of three different 
code search tools (see Fig. 1 and Instruments for descriptions). 
Forty-nine adults (university students and staff) participated in 
the study. None had prior programming experience. 

A. Instruments 

To ensure environment consistency in our study, we added 
statement markers, and implemented three code search tools in 
Looking Glass. Looking Glass (see Fig. 2) is a novice 
programming environment that includes support for common 
constructs (e.g., loops, methods, etc.) and parallel execution. 

We added first and last statement markers in Looking Glass 
to enable participants to mark the lines or blocks of code that 
they believed corresponded to target output functionality. Users 
could drag-and-drop the markers onto any statement in 
Looking Glass’ editing mode. When the user ran the program, 
the markers served as global breakpoints by pausing the entire 
program. The program paused before the statement marked 
first executed and after the statement marked last executed. We 
chose to include markers because we noticed in pilot studies 
that users in all conditions spent a long time trying to determine 



the correctness of a solution in the presence of interactions 
between threads. These markers enabled users in all conditions 
to more easily compare their selected code to the target code. 

We implemented three code search tools: a Debugger, 
Hastings, and Dinah (see Fig. 1), to explore how these different 

tools can support non-programmers in finding code responsible 
for graphical output. We included a debugger because 
debuggers are the most commonly available tool to localize 
features in an unfamiliar program. Hastings (previously the 
Output History Explorer Tool [4]) supports non-programmers’ 
natural search strategies to overcome search barriers [5]. Dinah 
[6] addresses Debugger and Hastings usage barriers [4] by 
utilizing non-programmers language for describing programs. 

To ensure balance in our tasks, we created three programs 
that vary along dimensions identified in previous research [5] 
to adequately approximate Alice programs created by novice 
programmers. We created thirteen total tasks in these programs. 

B. Study Sessions 

The study took place in single, two-hour long sessions. We 
randomly assigned participants to one of four conditions: 
Control (markers only), Debugger, Hastings, or Dinah. Users 
completed a survey and then an in-software tutorial for basic 
Looking Glass skills. Users next followed instructions for an 

(A) (B)

(C) 

Figure 1. Interfaces for the Debugger (A), Hastings (B) and Dinah (C) output localization support tools.
(A) The Debugger interface includes an (A-1) Executing threads pane, (A-3) a list of in-scope local variables, and (A-4) a list of current breakpoints. Users can 
click on a paused thread frame in A-1 to highlight its active line of code in green. (A-2) The Step Controls allow users to step into or over an active line of code.

(B) The Hastings interface has a (B-1) Time Slider for scrubbing through the recorded program time, (B-2) a view of the scene, and (B-3) a list of the actions 
characters performed at the selected time. Hastings annotates executing line(s) of code with (B-4) controls to replay or (B-5) navigate in the syntax tree. 

(C) The Dinah interface has (C-1) program playback controls, (C-2) a Right Now pane showing that executed in the selected time, (C-3) action history, (C-4) 
Statement Buttons that indicate methods are executing (yellow), completed (green), or not started (gray), (C-5) menus that enable users to breakdown a statement 
(i.e., show its implementation), replay a statement, locate a statement, and (C-6) help users to find concurrent executing code not visible in the current code view

Figure 2. Looking Glass IDE where a user programs by (1) dragging a 
method, (2) dropping it into the code pane, and (3) selecting arguments. 



example task that explained both how to drag-and-drop 
statement markers and their effect on program execution. Then, 
users in the tool groups viewed an overview of their tool that 
focused purely on presenting tool features to explicitly avoid 
suggesting strategies. Finally, all participants completed three 
training tasks and then as many evaluation tasks as possible. 

C. Study Tasks 

Each study session included two types of tasks: training 
tasks and evaluation tasks. We presented tasks with a short 
video of the target output to find. In each video a red box 
highlighted the target objects and actions. By presenting tasks 
through videos, rather than verbal descriptions, we avoided 
linguistic cues that could bias participants' search strategies. 

For each task, participants watched the target output video 
and attempted to find the code responsible for the output using 
their assigned tool, if any. Users marked possibly responsible 
code by dragging first and last markers onto statements. The 
markers’ global breakpoint effect provided the only correctness 
feedback; we provided no other feedback. 

1) Training Tasks: We asked participants to complete 
three training tasks to verify they understood the task 
completion process, had necessary skills (e.g., marking code in 
different contexts), and were familiar with their tool (if any). 

2) Evaluation Tasks: After completing the training tasks, 
participants completed as many code selection tasks as 
possible within the two hour session. To minimize potential 
learning effects, we randomized the order of all tasks, ensuring 
the same source program was not used in consecutive tasks. 

D. Data 

We collected a demographics and computer history survey, 
video recordings of participants' task attempts, and logs of tool 
users’ interface actions. After each answer submission, we 
asked participants to describe how they came to their solution. 
When the session ended, we asked participants how they would 
instruct a friend to find a line of code. This encouraged 
participants to verbalize their code search strategies. 

IV. RESULTS

We exclude two of our 49 participants who failed to 
understand our tasks during training. We present our results in 
two parts: user task performance and task search processes. 

A. User Task Performance 

To detect instruction time differences, for 44 users (three 
outliers removed, one control and two Debugger based on box 
plots), we performed a one way ANOVA which revealed a 
significant instruction time effect [F(3,40) = 12.13; p < .001]. 
A post-hoc Tukey HSD test showed significant differences 
between Control users and Hastings and Dinah users (p < .05), 
with a marginally significant difference between Control and 
Debugger users (p=.06). We detected no significant differences 
in instruction time between the treatment groups. This is not 
surprising since participants in code search tools conditions 
needed to review more material. A one-way ANOVA found no 
significant differences in the amount of time needed to 
complete the practice tasks [F(3,41)=.78; p=.512]. 

Because this significant difference in training time enabled 
control users to attempt more tasks in a session, we consider 43 
participants performance (one Control outlier removed based 
on box plot) on evaluation tasks only for the shortest time (17 
min., 23 sec.) that a participant had to attempt these tasks. 

To assess the performances between our four groups, we 
performed a one way MANOVA on the number of tasks 
completed (regardless of correctness) and the number of correct 
tasks completed during the comparison period (see Table I). 
We found a significant main effect for group [Wilks' λ=.67; 
F(6,76)=2.81, p<.05]. Using post-hoc contrasts, we found a 
significant difference between the code search performance of 
participants in the Control and Dinah groups and participants in 
the Debugger and Hastings groups [F (2,38) =0.331; p<.01]. 
We found no significant performance differences between 
Control and Dinah participants [F(2,38)=.09; p=.17] or 
Debugger and Hastings participants [F(2,38)=0.01; p=.73]. 

B. Task Search Processes 

After each session we asked participants to describe, step-
by-step, how they would instruct a friend to complete tasks like 
the study tasks. We anecdotally noted similar strategy points 
across all conditions. The similarities amongst descriptions led 
us to hypothesize that non-programmers progress through a 
sequential series of goals when attempting a code search task: 

1. Isolate when the target output functionality occurred. 
2. Identify candidate method calls at the selected time. 
3. Locate candidate method calls in the program code. 
4. Evaluate whether the located code is responsible for 

the target functionality. 
5. If necessary, search related (e.g., nearby) code. 

To test for an underlying search process driven by the 
hypothesized goals, we investigated how tool participants' tool 
usage aligned with the goals. In Table II we outline a mapping 
of specific tool interactions that correspond to our 
hypothesized goals. We briefly summarize each goal and give 
an example of its tool support below. 

1) Identify Temporal Location: Users begin code search by 
attempting to identify the point in time when the target 
graphical output occurred. For instance, Hastings and Dinah 
users can scrub through a program’s recorded execution. 

2) Evaluate Temporal Location Execution Information: 
Once the user has isolated a point in time, the user can view 
information describing the program’s execution state, external 
to the program code, at that point in time. For example, 
Hastings users can view a characters’ actions at a point in time 
by expanding the character in the current actions pane. 

3) Identifying Corresponding Code Location: After 
identifying a promising action to explore, users next identify 

TABLE I. TASK RESULTS FOR FIRST 17:23A OF TASK TIME

Group n 
Avg. (SD) 

Tasks 
Attempted 

Avg. (SD) 
Tasks 

Correct 
Control 10 2.60 (1.43) 1.90 (1.45) 
Debugger 9 1.33 (0.84) 0.67 (0.70) 
Hastings 12 1.67 (0.78) 0.83 (0.72) 
Dinah 12 2.00 (1.35) 1.75 (1.14) 

a. 17:23 is the minimum time a non-outlier user had to complete tasks



where that action occurs within the code. This location is what 
the user will mark if the action relates to the desired output. 

4) Evaluate Code Location: Once a user located a 
candidate action, the user needs to determine whether it is 
responsible for the target output effect. For example, 
Debugger users can use step over or resume a single thread to 
execute a statement and observe its output effect.

5) Explore Code Location: If the located action is not 
responsible for the target functionality, the target is often in a 
contextually related location (e.g., inside a method or block 
statement) which the user explores. For instance, Dinah users 
can breakdown statements to view their implementation. 
Additionally, Dinah’s help operation can aid users in 
identifying temporally and spatially related code.

In Fig. 3 we show the transitions between the hypothesized 
user search goals as evidenced by tool usage patterns. 
Percentages on transitions indicate the frequency an 
interaction sequence supporting a goal was followed by an 
interaction sequence supporting another goal. We computed 
these frequencies by mining user interaction log data for the 
tool feature sequences shown in Table II. For clarity, we 
removed edges between the states which account for fewer 
than 10% of transitions. We note that the most common 
sequence through the goals states, ignoring cycles, directly 
corresponds with our hypothesized goal sequence. 

V. CONCLUSION AND FUTURE WORK

Regardless of condition, non-programmers in our study 
used a common process for code search. This process is 
suggested by participants' verbalizations and validated through 
participants' use of tools. It is notable that none of the tools we 
evaluated performed significantly better than a global pause 
marker. This finding suggests two possibilities: 

1. Much of the difficulty in code search is evaluating 
whether the correct code is selected. 

2. Having multiple tasks in the same program may have 
created a memory effect that was more pronounced 
among control users due to an increased need for 
program comprehension. 

We note this study took place in a short time period and, 
due to the study structure, some groups had more task time. 

Additional research is necessary to determine whether our 
code search model generalizes to longer usage times and other 
programming domains. However, we believe this model may 
be a useful design aid for future code search tools. 

REFERENCES

[1] J. Brandt, P.J. Guo, J. Lewenstein, M. Dontcheva, and S. Klemmer, 
“Two studies of opportunistic programming: interleaving web foraging, 
learning, and writing code,” Proc. of CHI, 2009, pp. 1589-1598. 

[2] B. Dorn and M. Guzdial, “Graphic designers who program as informal 
computer science learners,” Proc. of ICER, 2006, pp. 127-134. 

[3] X. Fern, C. Komireddy, V. Grigoreanu, and M. Burnett, “Mining 
problem-solving strategies from HCI data,” ACM TOCHI, vol. 17, Apr. 
2010, pp. 3:1–3:22. 

[4] P. Gross and C. Kelleher, “Toward Transforming Freely Available 
Source Code into Usable Learning Materials for End-Users,” Proc. of 
PLATEAU, ACM, 2010. 

[5] P. Gross and C. Kelleher, “Non-programmers identifying functionality 
in unfamiliar code: strategies and barriers,” JVLC, v. 21, Dec. 2010, pp. 
263-276. 

[6] P. Gross, J. Yang, and C. Kelleher, “Dinah: an interface to assist non-
programmers with selecting program code causing graphical output,” 
Proc. of CHI, 2011, pp. 3397–3400. 

[7] I.R. Katz and J.R. Anderson, “Debugging: an analysis of bug-location 
strategies,” Hum.-Comput. Interact., vol. 3, 1987, pp. 351-399. 

[8] A.J. Ko and B.A. Myers, “Extracting and answering why and why not 
questions about Java program output,” ACM TOSEM, vol. 20, Sep. 2010, 
pp. 4:1–4:36. 

[9] H. Lieberman and C. Fry, “ZStep 95: A Reversible, Animated, Source 
Code Stepper,” Software Visualization: Programming as a Multimedia 
Experience, J. Stasko, Ed., MIT Press, 1997. 

[10] S. Oney and B. Myers, “FireCrystal: Understanding interactive 
behaviors in dynamic web pages,” Proc. of VL/HCC, 2009, pp. 105-108. 

[11] P. Romero, B. du Boulay, R. Cox, R. Lutz, and S. Bryant, “Debugging 
strategies and tactics in a multi-representation software environment,” 
Int. J. of Human-Comp. Stud., vol. 65, Dec. 2007, pp. 992-1009. 

[12] M.B. Rosson, J. Ballin, and J. Rode, “Who, What, and How: A Survey 
of Informal and Professional Web Developers,” Proc. of VL/HCC, 2005, 
pp.199-206.

TABLE II. TOOL FEATURES SUPPORTING AND INDICATING HYPOTHESIZED
NON-PROGRAMMERS’SEARCH GOALS

Supported and 
Indicated 

Search Goal 

Features and Feature Sequences Supporting and Indicating Search Goal 
(A > B indicates use of feature A followed by use of feature B) 

Debugger Hastings Dinah Control/Default for All 

1. Identify Temp-
oral Location 

* Run Prog. > 
Pause All Threads 

* Resume All > 
Pause All Threads 

* Time Scrub * Run Prog. > 
Pause 

* Resume > Pause 
* Time Scrub 

* Reading Prog. Code 
* Using statement 

markers as global 
breakpoints

2. Evaluate Temp-
oral Location 
Execution Info. 

* Select Thread * Expanding 
Current Char-
acter Actions 

* Click Action in 
Right Now 

3. Identify Corres-
ponding Code Loc. 

* Click Current 
Action 

* Locate Action 

4. Evaluate Code 
Location 

* Step Over 
* Resume Thread 

* Replay * Click Code 
Button > Replay 

5. Explore Code 
Location Context 

* Step Into 
* Set Breakpoint > 

Play All Threads 
or Restart Prog. 

* Navigation 
Controls 

* Click on Stmt. 
or Stmt. Index 

* Click Code 
Button > 
Breakdown 

* Help 

* Reading Prog. Code 
* Edit method to see 

implementation
Figure 3. Flow diagram between user search 
goals. Percentages represent the frequency one 
goal follows another in users’ tool interactions. 


