
Automatically Generating Tutorials to Enable Middle
School Children to Learn Programming Independently

Kyle J. Harms1, Dennis Cosgrove2, Shannon Gray3, Caitlin Kelleher1
1Washington University in St. Louis

One Brookings Drive
St. Louis, MO 63144

harmsk@seas.wustl.edu
ckelleher@cse.wustl.edu

2Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

dennisc@cs.cmu.edu

3Bard College
PO Box 5000

Annandale-on-Hudson, NY 12504
sg6337@bard.edu

ABSTRACT
Enabling middle school children to learn from code shared on the
internet may provide computer science learning opportunities to
those who would not otherwise have them. We augmented a
programming environment designed for middle school children to
automatically generate tutorials from code snippets in order to
help users learn new programming skills. In our new system, users
select code snippets from a program shared on the web and then
complete an automatically generated tutorial in order to re-create
that snippet within their own program. To evaluate the potential
learning gains from our generated tutorials, we conducted a
between-subjects study in which we evaluated the performance of
children introduced to new programming constructs through
automatically generated tutorials. Participants who used the
automatically generated tutorials performed 64% better on a near
transfer task compared to participants without generated tutorials.

Categories and Subject Descriptors
H.5.2 [User Interfaces]: Training, help, and documentation.

General Terms
Design; Human Factors.

Keywords
automatically generated tutorials; programming systems for
children; code reuse

1. INTRODUCTION
Today, computing technologies play an increasingly critical role
in progress across a wide range of disciplines. To sustain the
promise for improved computing technologies in the future
requires a large technical workforce. In the United States alone,
experts predict that approximately 1.4 million computing jobs will
be created between 2008 and 2018 [38]. Yet, based on current
graduation rates, many predicted jobs will go unfilled in both the
United States [38] and Europe [23].
Despite strong job prospects, recent enrollment in computer
science degree programs remains low [40]. Furthermore, by the
time students reach college, many have already opted out of math

and science courses and are too far behind to succeed in
computing degree programs [34, 41]. Meeting the potential
demand for computer scientists requires that we introduce
students to computer science before college. While programming
is taught in some high schools, middle school is the time that
many children, especially girls, begin to opt out of math and
science related fields [39]. Few middle school children have
access to the resources and formal opportunities, such as
programming courses, that can expose them to computing and
foster an interest in the field. In the absence of formal
opportunities to explore computing, enabling children to learn
programming independently while following their own interests
may offer a viable alternative.
Novice programming environments like Storytelling Alice [25]
and Scratch [35] motivate children to program, but currently lack
the support to enable users to learn programming concepts
independently. Professional and end-user programmers frequently
use code found on the web to learn new skills [4, 9, 36]. The
plethora of shared source code available on the web affords users
the option to find relevant code while pursuing a personally
meaningful project. Empowering children to utilize shared code as
a learning resource necessitates giving them the tools necessary to
easily reuse source code and the support needed to effectively
learn from it.
Existing code selection tools can help children to find relevant
code snippets in unfamiliar code [13]. However, users may not
understand the programming concepts used in the snippet. In this
paper, we present a system for middle school children that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components of
this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
IDC '13, June 24 - 27 2013, New York, NY, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-1918-8/13/06 $15.00.

Figure 1. An automatically generated programming tutorial

shown in the stencils walk-through mode.

mailto:Permissions@acm.org

automatically generates interactive, in-context programming
tutorials from code snippets for the Looking Glass [28]
programming environment. Our tutorials, as shown in Figure 1,
provide explanations of new programming constructs found in
code snippets and a detailed walk-through that guides users
through the mechanics necessary to re-create those code snippets.
We conducted a between-subjects study to evaluate the learning
gains for unfamiliar programming constructs found in code
snippets. We found that participants who completed an
automatically generated tutorial after selecting a code snippet with
a new programming construct performed 64% better on a near
transfer task than those participants without a generated tutorial.

2. RELATED WORK
Our work on the generation of tutorials from a code snippet is
built upon two specific areas of research: 1) leveraging existing
source code and 2) presenting and generating tutorials.

2.1 Leveraging Existing Source Code
Existing source code usually comes in two forms: 1) carefully
crafted examples and 2) raw source code. Prior research has
investigated several methods in order to leverage both types of
source code in an effort to help programmers with their tasks.
Currently, many of the tools designed to leverage existing source
code integrate pre-authored examples into development
environments to assist programmers when authoring code [2, 3,
21, 31]. Some of these tools assist experienced programmers to
more efficiently write code by associating source code with API
documentation [2] or linking source code to web browsing history
to maintain the programmer’s context [21]. Others enable
programmers to directly search the web for code examples from
within the development environment [3]. Codelets helps
programmers integrate example code into their programs by
allowing users to tweak parameters within the example to see how
the changes affect the program’s output [31]. These tools can
reduce development time and improve code quality but do not
directly support learning from the existing source code [2, 3, 31].
Unfortunately, all of these tools require pre-authored examples,
which are typically time consuming to produce and may not
match the programmer’s current context.
Allowing users to utilize existing source code without crafted
examples may help users find more personally relevant code to
use in their own programs. Scratch and Kodu allow children to
create modified versions of shared programs [29, 35]. However,
reusing entire programs may limit the utility of shared code in
user’s programs. Researchers have identified several strategies
and potential barriers to enable novice programmers to select code
snippets from unfamiliar programs [13, 14]. In fact, one such
system enables novice programmers to select snippets by linking
the graphical output of a program to the source which caused that
output [15, 20]. Interestingly, this system found that a majority of
users modified the behavior of or re-appropriated concepts from
selected code snippets [15].

2.2 Presenting and Generating Tutorials
There is a long history of research related to presenting tutorials
and, more recently, automatically generating tutorials.

2.2.1 Presenting Tutorials
Early studies of text and image-based tutorials revealed two
common problems: 1) users skipping or making mistakes in the
execution of steps [27] and 2) users struggling to perform on-
screen instructions [27]. In response, researchers have explored
alternative presentation styles for tutorials. Palmiter et al. found

that users of animated tutorials were able to complete tutorials
more quickly than users of a purely text-based tutorial, but did not
retain the material as well [32]. Other researchers have explored
presenting procedural information within the context of the
application by visually indicating the components needed for a
step [8], or overlaying a graphical, event-intercepting stencil atop
the interface [26]. In-context tools can help users to both find the
UI components needed for each step and reduce the potential for
error [26]. Alternative presentation styles that ask users to attempt
a tutorial task before guiding them through the task may alleviate
the retention issue noted with animated tutorials [19].
Additional research suggests that users often search for materials
relevant to a personal task [6]. This observation has inspired work
exploring short, task-based guides as an alternative to tutorials [5]
and placing short video clips documenting features of the
interface within tooltips to support user interface exploration [17].

2.2.2 Automatically Generating Tutorials
In Mindstorms, Seymour Papert envisioned learning as self-
motivated and connected to popular culture [33]. Particularly for
learners with limited community support, the success of self-
directed learning may depend on the availability of learning
materials appropriate to each learner’s self-motivated project.
Reducing the cost of creating tutorials, or removing it altogether,
creates the potential for a dramatic increase in available learning
materials. This may, in turn, make learning in pursuit of
personally meaningful projects more broadly achievable.
Automatically generated tutorials can be created and presented
separately from the application (e.g. text and image based or video
tutorials) or within the application’s context.
Several systems generate image-based tutorials by listening to an
event stream and capturing pictures. These events and pictures are
used to create a traditional text and image based tutorial [11], a
comic-style visual history of changes [30], and graphical
summaries of a task presented in a single page [22]. Rather than
simply capturing an event stream, mixT records a full screencast
and generates tutorials containing a list of textual steps
supplemented by short video illustrations of those steps [7].
SmartTutor has a similar end-user experience but, rather than
capturing videos, simply re-sends the captured events to the live
system [37]. While systems that generate textual, image, or video-
based tutorials dramatically reduce [7, 11, 22, 37] or eliminate
[30] the authoring time necessary to create a tutorial, they cannot
prevent or help users recover from mistakes.
Automatically generated in-context tutorials present the
opportunity to help users locate and correctly interact with the
components needed for each step. DocWizards and Sketch-Sketch
Revolution both generate in-context tutorials based on events
captured during a user interface performance by an expert [1, 10].
In DocWizards, tutorials are presented as a list of steps
supplemented with annotations drawn on the interface to highlight
relevant interface elements [1]. Sketch-Sketch Revolution
presents drawing tutorials through callouts and drawn strokes for
the user to trace [10]. Using the recorded event stream, both
systems can guide users through exactly recreating the expert’s
performance. However, because user tracking is done based on a
recorded event history, if users deviate from the intended path,
either intentionally or by mistake, the tutorials may become less
relevant [10] or unable to proceed [1].
While not a tutorial system per se, the Chronicle system uses a
recorded workflow to support learning from a document created
by other users [16]. As a user creates a document, Chronicle
records a workflow history and a video of the performance. When

another user interacts with the document later, they can explore
how the document was created by replaying video clips that are
overlaid on the active interface. Further, a user interested in a
particular piece of content can identify the video clips associated
with that selected content.
At its core, our tutorial system combines the ability to select a
subsection of a document (as in Chronicle) with the ability to
generate an in-context tutorial, similar to those created by
DocWizards and Sketch-Sketch Revolution. Unlike these three
systems, we generate tutorials and track progress based on the
underlying application models rather than a recorded event
history. This model-based generation and tracking enables greater
robustness in the face of mistakes and minor changes in the
application’s state. For our end users, this translates into a system
where a middle schooler can find a program that contains an
interesting animation and request a tutorial to learn to build that
animation using their own characters and story context.

3. LOOKING GLASS
We implemented our automatically generated programming
tutorials in the novice programming environment Looking Glass
[28]. Looking Glass is designed to enable middle-school aged
children to program by dragging and dropping programming
statement tiles to create 3D animated stories. We chose to
implement our automatically generated tutorials in Looking Glass
because it features an interface for selecting code snippets from
shared code [15] found through an online community [18] and
because it provides an API for interactive tutorials [19].

3.1 Selecting Snippets from Code
The Looking Glass Community [18] provides an online repository
of programs shared by other Looking Glass users. Users can
browse the community for motivating programs and later access
these programs inside of Looking Glass. Then, users can remix an
animation from a shared program by 1) selecting their animation
as a code snippet and 2) choosing characters from their own

program to perform the actions in that code snippet.
Users select a code snippet using a code selection interface that
connects the graphical output of each program statement to the
code that caused that output [12, 15]. To select a snippet, users
mark the beginning (Figure 2-A) and ending (Figure 2-B)
programming statements that bound an animation. After selecting
the snippet, the system identifies valid character substitutions for
the user to choose from in order to adapt the snippet into the
user’s current program. Figure 3-A shows the original code
snippet and Figure 3-B shows the remixed snippet with character
substitutions applied. Following character substitution, the
remixed code snippet is automatically copied into the user’s
program.

3.2 Interactive Tutorials Interface
Looking Glass features an interface for stencils-based tutorials
[26] with two presentation styles: on-request and detailed walk-
through [19]. The on-request stencils provide high level goals that
users can attempt to complete independently. If users do not know
how to complete a step, they can request a detailed walk-through
of that step. Previous research suggests that asking users to
complete a step independently before providing detailed guidance
results in a 47% percent improvement on a near transfer task [19].
In the on-request stencils mode, the interface of the application
looks normal; however, there is a small on-screen note that
provides goal instructions and a button to request additional help.
For example, an instruction note might read “Drag and drop a For
Each ordering box” (see Figure 4). To complete this step, a user
would need to open the control flow constructs tab and then drag
and drop a For Each programming construct into the code editor.
If the user doesn’t know how to do this, he or she can request a
detailed walk-though version of the same step by clicking the
“Show Me How” button shown in Figure 4.
In the detailed walk-through mode, each action necessary to
complete a step is presented with a detailed instruction note. For

Figure 2. Marking the (A) beginning and the (B) ending of a code snippet in Looking Glass.

Figure 3. The (A) original code snippet from Figure 2 and the (B) remixed code snippet.

example, to insert a For Each statement, three actions are
necessary: 1) “Select control flow” (an interface tab), 2) “Click
and drag a For Each statement” and 3) “Drop here.” The notes are
presented on a graphical overlay that contains highlighted holes
and arrows pointing to the widgets necessary to complete the step
as shown in Figure 1. The holes guarantee that the user interacts
only with the components needed for each action; all events from
widgets without holes are intercepted.

4. GENERATING TUTORIALS
To support users learning from shared code, we generate a tutorial
for every remix. Now, when users remix, instead of copying
remixed snippets directly into users’ programs, we generate
tutorials that guide users through re-constructing the snippets
within their own programs. Our process for generating tutorials
requires two phases: 1) generating a draft tutorial of the code
snippet and 2) advancing the tutorial based on the user’s progress.

4.1 Generating the Draft Tutorial
We generate each tutorial based on a remixed code snippet.
Fundamentally, this process requires translating the selected code
snippet into a sequence of actions users can take in order to re-
create that snippet in Looking Glass. To facilitate this, we have
made two fundamental changes to Looking Glass: 1) the code
base follows a model-driven architecture and 2) each program
statement in a code snippet knows the model responsible for its
creation. In our model-driven architecture, each model is
responsible for creating and tracking the state for all of its
widgets. Together, these changes enable the system to identify the
widgets needed to re-create each statement in a code snippet.
For each programming statement in the remixed code snippet, we
generate a draft tutorial step from each statement’s model.
Suppose that a user has requested a tutorial from a code snippet
that requires adding a Count Loop. Because the Count Loop
programming statement knows that it was created by the Count
Loop Model, and since the model tracks its widgets, we can find
the Count Loop widget in the active interface (see Figure 5).
However, we need to be able to go one step further. In Figure 5,
the control flow tab happens to already be selected. If the tab was
not selected, the tutorial would need to first tell the user to change
the selected tab to the control flow tab. We call this relationship a
model dependency: in order for the user to access one model’s
widgets, another model must be in a particular state. In this case,
the Count Loop Model depends on the Tab Model.

Because we cannot know the states of a model’s dependencies in
advance, we create a draft tutorial of the code snippet. Each
statement in the code snippet becomes a step in the draft tutorial.
We do not create any steps for model dependencies during this
phase. Later, when we present the tutorial to the user, we check
the model dependencies for each step and insert prerequisite steps
when necessary to satisfy any dependencies.

4.2 Advancing Through the Tutorial
Once we have produced the draft tutorial we can begin the process
of presenting the tutorial to the user. Advancing through the
tutorial requires three separate processes: 1) verifying each step’s
dependencies and inserting prerequisite steps, 2) presenting the
steps to the user, and 3) validating the user’s progress. The
algorithm we use to advance through the tutorial only processes
each step in the tutorial when it is time to present that step to the
user. This ensures that if a previous step causes the current step’s
dependencies to go unsatisfied we can adjust by inserting new
steps to fulfill these dependencies. We use this algorithm to
advance through the tutorial:

4.2.1 Satisfying Model Dependencies and Inserting
Prerequisite Steps
When a tutorial step is ready to be presented to the user, we query
that step’s model and verify that all of its dependencies have been
satisfied. If the dependencies are satisfied, there is at least one
way to create the step’s programming statement using the widgets
currently visible to the user. In our Figure 5 example, the Count
Loop Model’s dependencies are met if the tab’s current selection
is the Control Flow Tab.
If the current state of the interface does not have a widget visible
for the model, then its dependencies are not satisfied. In this case
we insert prerequisite steps that will change the state of the
interface so that a widget is visible to the user. To do this, we use
our model-driven architecture to discover a step’s dependencies.
We first query the current step’s model for its dependent models.
We then ask the dependent models to create prerequisite steps and
insert these steps before the current step. In our example (see
Figure 5), suppose that the methods tab is selected and, therefore,
the Count Loop Model’s dependencies are not satisfied. In this
case, we would ask the tab model to generate a new step that

For each draft tutorial step do:
If the step’s dependencies are satisfied then:

Present the step to the user.
Validate the user’s progress.
Advance to the next step.

Else:
Create and insert a prerequisite step.

Figure 5. Generating a draft tutorial.

Figure 4. An automatically generated programming tutorial

shown in the on-request stencils mode.

guides the user to select the Control Flow Tab. We then insert this
prerequisite step before the Count Loop step.

4.2.2 Presenting Steps
Once a step’s dependencies have been satisfied, we initialize the
stencils-based interface for the step using one of the model’s on-
screen widgets. We then create a hole in the stencils graphical
overlay where that widget resides and query the model to generate
the instructions for the step’s notes. To help users learn new
programming constructs, we append an explanation of any control
flow constructs within the note’s generated instructions as shown
in Figure 4.

4.2.3 Tracking Progress
To validate a user’s progress, we need to 1) track the changes the
user has made through completing the tutorial and 2) compare the
recorded changes to the changes required by the current step.
When a user performs any action in Looking Glass, that action is
recorded by its model as a transaction. Each transaction stores the
model that created it, the current state of that model, and the states
of the model’s dependencies. All transactions are stored in a
history that we can query when determining the correctness of the
current step. Figure 6 shows a user working through the draft
tutorial created in our Figure 5 example. In Figure 6, the user first
selected the control flow tab and then used the Count loop. Both
actions are recorded as transactions in the transaction history.
While the stencils-based interface can prevent incorrect clicks in a
tutorial, it cannot ensure that a step is completed correctly. In
order to ensure correctness and support auto advancing, we
compare the user’s current actions to the current tutorial step. We
check to see if the latest recorded transaction exactly matches the
change made in the current step. If the transaction and step
changes match, we automatically advance to the next step. This
removes any uncertainty about whether the current step was
completed correctly. Otherwise, we roll back the latest
transaction. By validating the user’s progress, we prevent
accidental mistakes from derailing the tutorial.

5. EVALUATION
We hypothesized that automatically generated tutorials for
selected code snippets could increase learning gains for unfamiliar
programming concepts. To evaluate this, we conducted a
between-subjects experiment comparing the performance of
participants who only remixed and participants who remixed and
then completed a tutorial on a near transfer task. During the
experiment, participants in the control condition remixed three
different programs, each containing a different programming
construct. Participants in the experimental condition remixed the
same programs, but each remix was followed by a generated

tutorial that guided the participant through reconstructing the
remixed code snippet. To evaluate their learning gains, we asked
participants in both groups to complete a transfer program
following each remix.

5.1 Participants
We recruited our participants for this study from the Academy of
Science of St. Louis mailing list. The Academy of Science is a
not-for-profit organization dedicated to scientific outreach. We
pre-screened 43 participants prior to their arrival to the study in an
attempt to ensure they had no prior programming experience. On
arrival, we again questioned each participant about their computer
programming experience and discovered that three participants
did have past programming experience. We have excluded the
three users with prior programming experience from our results.
The remaining 40 participants (23 female, 17 male) ranged in age
from 10 to 16 years (µ = 12.29,σ = 1.75). We gave each
participant a $10.00 gift certificate to iTunes or Amazon.com in
recognition of their participation.

5.2 Materials
To test learning gains for unfamiliar programming constructs, we
created three tasks that each introduced a different programming
construct. We designed the tasks to introduce three control flow
constructs of varying levels of difficulty within Looking Glass:
Do Together (parallelism), Count Loop (loop N iterations), and
For Each (iterate over an array). We chose these constructs
because, based on our prior experience with Looking Glass users,
many new programmers have difficulty learning these constructs
independently.
We divided each task into a training phase and a transfer phase.
For the training phase we created two programs: 1) a snippet
selection program that is 2) remixed into another program. The
snippet selection program contained one instance of the
programming construct specific to the task, while the remix into
program contained only simple sequential statements. For
example, in the For Each task the remix into program is a story
about a mother trying to get her three kids to eat their vegetables.
The related snippet selection program features a magician
demonstrating a trick that makes three rabbits grow extremely
large using the For Each construct. When completed through
remixing, the final program shows the three kids growing large
because they ate their vegetables.

Figure 7. Task cards for the For Each task.

Figure 6. Tracking the user’s progress in a tutorial.

For the transfer phase we created a transfer program similar to the
remix into program used during the training phase. We designed
the transfer program to require the user to use the programming
construct from the training phase to complete the program. For
example, the transfer program for the For Each task depicts a
teacher taking attendance for three students. This program is
completed by using the For Each construct to make each student
say “here.” To provide consistent directions to all participants, we
created task cards which outlined the requirements for each phase
of every task. The task cards for the For Each task are shown in
Figure 7.

5.3 Study Procedure
The study consisted of a series of one-time, 1.5 hour sessions with
no more than five participants. At the beginning of each session,
we randomly assigned participants to the control or experimental
condition. Due to the excluded users, the control group contained
21 participants whereas the experimental group contained 19. To
balance potential learning effects, we ordered the three tasks using
a Latin squares design to alternate the order in which the tasks
were presented to each participant. Participants were positioned in
the same room, but they could only see their own computer
monitors and not those of the other participants. At the beginning
of each evaluation session we asked participants to complete a
demographics survey. Afterwards, we gave an overview and
demonstration of the remix process. Following the demonstration,
we asked participants to complete the three tasks. During the
training phase, participants used remixing to complete a program.
In the transfer phase, we asked participants to finish a transfer
program independently. We concluded the study with an attitude
survey.

5.3.1 Demonstration
To familiarize participants with the mechanics of remixing, we
began with a simple demonstration of the remix process. We
designed the demonstration to be functionally identical to the
training phase. For the demonstration, we created a remix into
program where the goal was to make a bunny hop by remixing an
animation of a girl jumping from the snippet selection program.

The demonstration programs contained only simple sequential
execution and no tutorial. During the demonstration we showed
participants how to select the beginning and ending snippet
statements and how to make their character selections using the
code selection interface. We provided no other instruction to the
participants.

5.3.2 Training Phase
For each task, we began with the training phase as shown in
Figure 8. We asked the participant to carefully read the task card
for this phase. Afterwards, we opened and played the remix into
program. Next, each participant watched the snippet selection
program. When finished watching the snippet selection program,
we instructed the participant to begin and reminded him or her to
use only remixing to complete the task. For the control condition
participants, the system automatically copied their selected code
snippet into the remix into program. In the experimental
condition, each participant completed a generated tutorial to re-
construct the remixed snippet in the remix into program.

5.3.3 Transfer Phase
During the transfer phase, each participant attempted to finish a
transfer program requiring the use of the programming construct
introduced during the training phase of that task as shown in
Figure 9. To begin, we asked the participant to read the task card
for the transfer phase. Each participant then watched the
unfinished transfer program. We then instructed the participant to
finish the transfer program independently without remixing.
In our pilot study, we observed that participants who made little or
no progress on the first task seemed to disengage for the second
and third tasks. To prevent struggling users from disengaging, we
adopted a policy of providing one specific hint for the transfer
phase. If, after five minutes from starting the transfer phase, the
participant did not have the correct programming construct added
to their transfer program, we provided the control flow tab (CFT)
hint: the researcher pointed to the control flow constructs tab and
told the participant “To complete this task, look here.” In Looking
Glass, the control flow constructs are located in a tab pane, which
may not be immediately obvious to new users. While this policy

Figure 8. The For Each task’s training phase.

Figure 9. The For Each task’s transfer phase.

creates the potential for a learning effect, we felt that the risk of
participants disengaging was a more significant problem. Our
observations in the pilot study suggested that the hint did not
provide a noticeable learning advantage. If a participant was not
finished with the transfer phase after ten minutes, we recorded this
phase as incomplete and moved the participant onto the next task.

5.4 Data
We collected a short demographic survey, the remix and transfer
programs, and an attitude survey.

5.4.1 Remix Programs
We checked the participants’ remix into programs from the
training phase for completeness and recorded whether the
programs contained the appropriate programming construct
exactly as it appeared in each snippet selection program. If the
participant failed to correctly select the beginning and ending of
the code snippet during remixing they may not have been exposed
to the programming construct required for the transfer program.

5.4.2 Transfer Programs
We graded the transfer programs for correctness. We developed
these criteria by analyzing the transfer programs from the pilot
study. Each criterion is worth one point.
We graded the Do Together transfer program using the following
criteria. (4 points)

1. Program contains a Do Together construct. If not, stop
grading.

2. Do Together contains at least two statements. If not, stop
grading.

3. Correct characters in programming statements.
4. Animation is correct.

We graded the Count transfer program using the following
criteria. (5 points)

1. Program contains a Count construct. If not, stop grading.
2. Count contains at least one statement. If not, stop grading.
3. Count index is correct.
4. Correct characters in programming statements.
5. Animation is correct.

We graded the For Each transfer program using the following
criteria. (5 points)

1. Program contains a For Each construct. If not, stop
grading.

2. For Each contains at least one statement. If not, stop
grading.

3. Array is defined correctly for the animation.
4. Programming statements use the loop iterator.
5. Animation is correct.

5.4.3 Attitude Survey
We used the Intrinsic Motivation Inventory’s (IMI) Task
Evaluation Questionnaire (TEQ) [24] to evaluate participants’
experiences during the evaluation. The TEQ is a standardized,
shortened version of the 45 item IMI. The TEQ includes 22 items
that represent four subscales: interest/enjoyment, perceived
competence, perceived choice and pressure/tension [24]. For all
questions, participants rate their agreement using a Likert scale
ranging from 1 (not at all true) to 7 (very true). To ensure that the
four subscales were valid for our data, we measured the internal
consistency of each subscale using Cronbach’s alpha. Table 1
shows an example question and our computed Cronbach’s alpha
for all four subscales. The Cronbach’s alpha values for
interest/enjoyment, perceived competence, and pressure/tension
are acceptable. The perceived choice Cronbach’s alpha is below
the generally accepted level for reliability (0.7), so we have
chosen not to analyze the results from this subscale.

6. RESULTS
To provide insight into the impact of automatically generated
tutorials on users’ success with and experience while learning new
programming constructs, we explore two kinds of data: task
performance data and attitudinal survey data.

6.1 Task Performance Results
Participants in the experimental condition took longer to complete
the training phase than participants in the control condition. This
is not surprising given that the experimental conditional ended the
remix process with a tutorial. Participants in the experimental
condition took an average of 22.34 minutes to complete all the
remixes and tutorials as compared to 13.19 for control
participants. This difference in training time is significant
(F[1,38] = 29.37, p < 0.001). See Table 2 for additional data
from the training phase.
We found no significant difference between the amount of time
participants in the control and experimental conditions needed to
complete the transfer programs (F[1,38] = 1.30, p = 0.26). See
Table 3 for the transfer phase’s average completion times. Figure
10 shows the average performance scores for each of the transfer
programs. We compared the performance of participants in the
experimental and control conditions using ANCOVA with the
presence or absence of the CFT hint as a covariate. Participants in
the experimental condition averaged 1.56 correct transfer
programs versus 0.95 for control participants, a 64% improvement
(F[2,37], p < 0.05). There was a significant main effect for

Table 1. Example questions and Cronbach's alpha for each of
the four subscales in the TEQ

Scale Example Question
Cronbach’s

Alpha

Interest/
Enjoyment

I enjoyed making my story in
Looking Glass very much. 0.9248

Perceived
Competence

I think I did pretty well at making
my story in Looking Glass,
compared to others.

0.7876

Perceived
Choice

I felt like I had to make my story
in Looking Glass. [reversed item] 0.6079

Pressure/
Tension

I felt pressured while making my
story in Looking Glass. 0.8219

Table 3. The percentage of CFT hints, completed transfer
programs, and average time needed for the transfer phase.

 Do Together Count For Each

Control/Experimental C E C E C E

CFT Hint (%) 33.3 31.6 52.4 57.9 52.4 26.3

Average Time (min.) 5.85 5.74 6.11 5.96 4.57 4.39

Table 2. The percentage of correct remixes and average time
needed for the training phase.

 Do Together Count For Each

Control/Experimental C E C E C E

Correct Remixes (%) 85.7 84.2 81.0 89.5 100.0 89.5

Average Time (min.) 3.89 7.46 4.29 5.75 5.01 9.14

condition (p < 0.05) but not for the CFT hint (p = 0.48). This
suggests that our decision to direct users to the available control
flow constructs tab did not significantly impact their performance.
The transfer program results suggest that automatically generated
tutorials, combined with the code selection process, enhanced
learning gains.

6.2 Attitude Survey Results
We analyzed the three IMI subscales with acceptable reliability:
interest/enjoyment, perceived competence, and pressure/tension.
There were no statistically significant differences between the
control and experimental groups for the interest/enjoyment scale
(F[1,38 = 0.06, p = 0.81) or the perceived competence scale
(F[1,38] = 0.617, p = 0.44). Although it was not significant,
participants in the experimental condition tended to report feeling
more relaxed in working with Looking Glass than participants in
the control group (experimental participants averaged -1.46 versus
-0.71 for control participants, F[1,38] = 3.13, p = 0.085). Table
4 shows the correlations between participants’ scores on the
transfer programs and the three TEQ subscales. Additionally,
there is a strong correlation (p < 0.0001) between
Interest/Enjoyment and Perceived Competence. In other words,
participants who felt that they were more skilled at working with
Looking Glass tended to also report greater enjoyment in working
with the system.

7. DISCUSSION AND LIMITATIONS
One possible explanation for the learning gains demonstrated by
participants in the experimental condition is the increase in time
on task. In designing the study, we elected to compare the
learning resulting from a single remix. It is possible that asking
users in the control condition to complete multiple remixes could
result in similar learning gains. However, we think this is unlikely
because the process of remixing requires only that users identify
the beginning and end of the target functionality. Users could

easily remix additional behaviors without needing to understand
all of the code elements between the beginning and ending remix
markers. In contrast, rebuilding the selected code through
completing the tutorial introduces users to each of the code
elements from the snippet.
Ultimately, the automatic generation of tutorials creates the
potential for users to follow their own interests. However, in this
study we asked users to complete a set of specified tasks in order
to measure the potential learning gains from tutorials rather than
remixing alone. In this context, the introduction of tutorials
creates the potential for the experience of working with Looking
Glass to feel more like homework. The similarity in the attitude
scores between the control and experimental groups suggests that
the introduction of tutorials did not negatively impact user
experience. Additional studies are needed to explore long term
learning and how users incorporate remixing and tutorials into the
pursuit of their own projects.
Further, despite the constrained structure of our study, it provided
a gratifying preview of the playful feel that this style of learning
may ultimately engender. Several participants commented that
they enjoyed the puzzle-like quality of the remix process. And
after remixing and completing a tutorial, several participants
began modifying and personalizing the program. The fact that
participants enjoyed the process of searching for actions to learn
from and wanted to continue programming after rebuilding those
actions via a tutorial provides support for our approach.

8. CONCLUSION AND FUTURE WORK
In this paper, we have described a method for automatically
generating and advancing interactive, in-context programming
tutorials and demonstrated that the use of these tutorials resulted
in learning improvements for unfamiliar programming constructs.
Particularly for learners who have limited or no access to
computer science learning opportunities within their own
communities, the ability to create tutorials from content of interest
may encourage and enable a broader range of learners to explore
computing.
The ability to automatically generate tutorials already opens the
door for users to personalize their own learning trajectories.
However, much more is possible. Currently, given a code snippet,
we generate the same tutorial for all users. By adding a user
model that can track the programming constructs users have
already experienced, we can customize the steps and explanations
given. If a user is seeing a construct for the first time, the tutorial
might include more detailed explanations as well as additional
steps to demonstrate the behavior of that construct. When
presenting a familiar construct, the tutorial might present a higher
level goal that requires learners to synthesize multiple familiar
ideas and steps. We plan to explore how to best incorporate
knowledge of a learner’s history to maximize learning gains.

9. ACKNOWLEDGEMENTS
This work was funded by NSF grant #1054587. We would like to
thank the Academy of Science in St. Louis for their help with
participant recruitment.

10. REFERENCES
[1] Bergman, L. et al. 2005. DocWizards: a system for authoring

follow-me documentation wizards. Proc. UIST, 191–200.
[2] Bhardwaj, A.P. et al. 2011. Redprint: integrating API

specific “instant example” and “instant documentation”
display interface in IDEs. Proc. UIST, 21–22.

Table 4. Attitude survey correlations among continuous
variables. (*𝐩 <.𝟎𝟓, **𝐩 <.𝟎𝟎𝟎𝟏)

 Task
Score

Interest/
Enjoyment

Perceived
Competence

Pressure/
Tension

Task Score 1.00 -0.10 0.27 -0.64*

Interest/
Enjoyment

 1.00 0.67** -0.12

Perceived
Competence 1.00 -0.33*

Pressure/
Tension

 1.00

Figure 10. Average transfer program scores for each task.

61.9%

24.8%
8.6%

77.6%

53.7%

25.3%

Do Together Count For Each

Control Experimental

[3] Brandt, J. et al. 2010. Example-centric programming:
integrating web search into the development environment.
Proc. CHI, 513–522.

[4] Brandt, J. et al. 2009. Two studies of opportunistic
programming: interleaving web foraging, learning, and
writing code. Proc. CHI, 1589–1598.

[5] Carroll, J.M. et al. 1987. The minimal manual. Hum.-
Comput. Interact. 3, 2 (1987), 123–153.

[6] Carroll, J.M. and Rosson, M.B. 1987. Paradox of the Active
User.

[7] Chi, P.-Y. et al. 2012. MixT: automatic generation of step-
by-step mixed media tutorials. Proc. CHI EA, 1499–1504.

[8] Coachmarks:
http://www.developer.apple.com/techpubs/mac/AppleGuide/
AppleGuide-24.html.

[9] Dorn, B. and Guzdial, M. 2006. Graphic designers who
program as informal computer science learners. Proc. ICER,
127–134.

[10] Fernquist, J. et al. 2011. Sketch-sketch revolution: an
engaging tutorial system for guided sketching and
application learning. Proc. UIST, 373–382.

[11] Grabler, F. et al. 2009. Generating photo manipulation
tutorials by demonstration. Proc. SIGGRAPH, 1–9.

[12] Gross, P. et al. 2011. Dinah: an interface to assist non-
programmers with selecting program code causing graphical
output. Proc. CHI, 3397–3400.

[13] Gross, P. and Kelleher, C. 2010. Non-programmers
identifying functionality in unfamiliar code: strategies and
barriers. Journal of Visual Languages & Computing. 21, 5
(Dec. 2010), 263–276.

[14] Gross, P. and Kelleher, C. 2010. Toward transforming freely
available source code into usable learning materials for end-
users. Proc. PLATEAU, 6:1–6:6.

[15] Gross, P.A. et al. 2010. A code reuse interface for non-
programmer middle school students. Proc. IUI, 219–228.

[16] Grossman, T. et al. 2010. Chronicle: capture, exploration,
and playback of document workflow histories. Proc. UIST,
143–152.

[17] Grossman, T. and Fitzmaurice, G. 2010. ToolClips: an
investigation of contextual video assistance for functionality
understanding. Proc. CHI, 1515–1524.

[18] Harms, K.J. et al. 2012. Designing a community to support
long-term interest in programming for middle school
children. Proc. IDC, 304–307.

[19] Harms, K.J. et al. 2011. Improving learning transfer from
stencils-based tutorials. Proc. IDC, 157–160.

[20] Hartmann, B. et al. 2007. Programming by a sample: rapidly
creating web applications with d.mix. Proc. UIST, 241–250.

[21] Hartmann, B. and Dhillon, M. 2010. HyperSource: bridging
the gap between source and code-related web sites. Adjunct
proc. UIST, 421–422.

[22] Huang, J. and Twidale, M.B. 2007. Graphstract: minimal
graphical help for computers. Proc. UIST, 203–212.

[23] IEEE Job Site:
http://careers.ieee.org/article/European_Job_Outlook_0312.
php. Accessed: 2013-01-22.

[24] Intrinsic Motivation Inventory:
http://www.selfdeterminationtheory.org/questionnaires/10-
questionnaires/50. Accessed: 2012-09-16.

[25] Kelleher, C. et al. 2007. Storytelling alice motivates middle
school girls to learn computer programming. Proc. CHI,
1455–1464.

[26] Kelleher, C. and Pausch, R. 2005. Stencils-based tutorials:
design and evaluation. Proc. CHI, 541–550.

[27] Knabe, K. 1995. Apple guide: a case study in user-aided
design of online help. Proc. CHI, 286–287.

[28] Looking Glass: http://lookingglass.wustl.edu.
[29] MacLaurin, M. 2009. Kodu: end-user programming and

design for games. Proc. FDG, xviii–xix.
[30] Nakamura, T. and Igarashi, T. 2008. An application-

independent system for visualizing user operation history.
Proc. UIST, 23–32.

[31] Oney, S. and Brandt, J. 2012. Codelets: linking interactive
documentation and example code in the editor. Proc. CHI,
2697–2706.

[32] Palmiter, S. et al. 1991. Animated demonstrations vs. written
instructions for learning procedural tasks: a preliminary
investigation. Int. J. Man-Mach. Stud. 34, 5 (1991), 687–701.

[33] Papert, S. 1980. Mindstorms: children, computers, and
powerful ideas. Basic Books, Inc.

[34] Pryor, J.H. et al. 2010. The American Freshman: National
Norms for Fall 2009.

[35] Resnick, M. et al. 2009. Scratch: programming for all.
Commun. ACM. 52, 11 (2009), 60–67.

[36] Rosson, M.B. et al. 2005. Who, What, and How: A Survey of
Informal and Professional Web Developers. Proc. VL/HCC,
199–206.

[37] Ying Zhang et al. 2009. SmartTutor: Creating IDE-based
interactive tutorials via editable replay. Proc. ICSE, 559–
562.

[38] 2011. Computing Education and Future Jobs: A Look at
National, State, and Congressional District Data. National
Center for Women & Informaton Technology.

[39] 1987. Gender Differences on the California Statewide
Assessment of Attitudes and Achievement in Science.
Proceedings of the Annual Meeting of the American
Educational Research Association.

[40] Taulbee Survey Report 2010-2011. Computing Research
Association.

[41] 2000. Tech-Savvy: Educating Girls in the New Computer
Age. American Association of University Women
Educational Foundation.

	1. Introduction
	2. Related Work
	2.1 Leveraging Existing Source Code
	2.2 Presenting and Generating Tutorials
	2.2.1 Presenting Tutorials
	2.2.2 Automatically Generating Tutorials

	3. Looking Glass
	3.1 Selecting Snippets from Code
	3.2 Interactive Tutorials Interface

	4. Generating Tutorials
	4.1 Generating the Draft Tutorial
	4.2 Advancing Through the Tutorial
	4.2.1 Satisfying Model Dependencies and Inserting Prerequisite Steps
	4.2.2 Presenting Steps
	4.2.3 Tracking Progress

	5. Evaluation
	5.1 Participants
	5.2 Materials
	5.3 Study Procedure
	5.3.1 Demonstration
	5.3.2 Training Phase
	5.3.3 Transfer Phase

	5.4 Data
	5.4.1 Remix Programs
	5.4.2 Transfer Programs
	5.4.3 Attitude Survey

	6. Results
	6.1 Task Performance Results
	6.2 Attitude Survey Results

	7. Discussion and Limitations
	8. Conclusion and Future Work
	9. Acknowledgements
	10. References

