
Applying Cognitive Load Theory to Generate
Effective Programming Tutorials

Kyle J. Harms
Department of Computer Science & Engineering

Washington University in St. Louis
St. Louis, Missouri, United States

harmsk@seas.wustl.edu

I. INTRODUCTION
Many programmers, including novices, often attempt to

solve their coding problems by searching the web for example
code [1]. Because these programmers are invested in their
current project, they are motivated to discover a solution to
their problem [2]. While searching the web for a solution, they
may encounter source code that addresses their issue and also
contains programming concepts that are new to user.
Unfortunately, novice programmers often struggle to
understand the source code and can fail to successfully
integrate the code into their programs [3]. To help novice
programmers understand unfamiliar source code, we propose
automatically generating tutorials from source code to help
these programmers acquire new programming skills in the
course of working on their own chosen projects.

In this paper, I describe our prior work on how
automatically generating walk-through tutorials helps novice
programmers learn new programming concepts found in
unfamiliar code [4]. Following this, I introduce my proposal to
use Cognitive Load Theory to improve the effectiveness of
learning new programming concepts from generated tutorials.
To accomplish this, I propose automatically generating
personalized tutorials based on a user’s programming
expertise.

II. AUTOMATICALLY GENERATING TUTORIALS
We initially hypothesized that novice programmers would

effectively learn programming constructs from automatically
generated interactive, in-context tutorials that walk the user
through every step necessary to reconstruct unfamiliar code
within their program [4]. To evaluate our hypothesis we
developed automatically generated programming tutorials in
the novice programming environment Looking Glass [5]. To
automatically generate a tutorial, we use a model-driven
architecture to translate each statement in the code into a
sequence of actions that a user must take in order to reconstruct
that statement.

We conducted an evaluation to assess whether the
generated tutorials would help users learn new programming
concepts found within unfamiliar code. We asked participants
to complete several near transfer tasks that required the use of a
programming concept found in the unfamiliar code. Compared
to the control condition, whose participants did not complete a

tutorial, the users in the experimental condition performed 64%
better on the near transfer tasks. While the experimental
condition did perform better than the control condition, users
given the tutorial only averaged a 52.2% success rate when
completing the near transfer tasks. This result advocates for
refining the tutorials to improve their effectiveness.

Interestingly, the limited learning that occurred in our
evaluation is predicted by Cognitive Load Theory.
Fundamentally, learning depends on working memory, which
is a necessary and limited resource that can be easily
overwhelmed. Upon reflection, we believe our generated
tutorials present too much information for the user to absorb
and thereby overwhelm the user’s working memory. The
tutorials contained a step for every action required to
reconstruct the code. However, many of these tutorial steps are
unrelated to programming constructs; instead these steps
configure the state of the interface (e.g. selecting a tab). In fact,
the number of steps related to a programming construct for a
tutorial averaged 17% of the total steps. Cognitive Load
Theory suggests that many extraneous steps will increase
cognitive load and reduce learning.

We predict that by employing techniques from Cognitive
Load Theory we can improve the effectiveness of our
generated tutorials by personalizing each tutorial to a user’s
programming expertise. While other generated tutorial systems
do exist for photo manipulation [6] or drawing [7], we are
unaware of any tutorial generation system that generates
personalized tutorials based on user expertise.

III. COGNITIVE LOAD THEORY
Cognitive Load Theory (CLT) suggests that by carefully

managing the working memory needs of a learner during an
instructional task, we can increase the efficiency of learning
[8]. Conversely, if a task overwhelms working memory
capacity, learning will not occur [8]. A learner’s working
memory is affected by both intrinsic and extraneous cognitive
load for an instructional task.

Intrinsic cognitive load is the inherent complexity of a task
for a learner. Because intrinsic cognitive load is grounded by
the learner’s expertise, intrinsic cognitive load cannot be
altered by the design of an instructional task.

Extraneous cognitive load is the extra load beyond the
intrinsic cognitive load that is not necessary for learning a

concept, but is generated by the manner in which an
instructional task is presented to a learner [8]. Extraneous
cognitive load is controlled by changing the design of the task.
Often an instructional task will require cognitive resources that
are not directly related to the learning objective. An effective
way to lower the extraneous load in this situation is to tailor
each instructional task to the learner’s expertise by eliminating
the elements that are not necessary for the concept [9]. In this
way, a learner’s working memory can be devoted more fully to
understanding the desired concept.

Imagine the following scenario. We would like Lucia, a
novice programmer, to understand how to use an iterator in a
loop. If we ask Lucia to program a loop with an iterator in a
traditional programming language, she would also need to
learn the programming syntax for the iterator. The
programming syntax adds extraneous cognitive load to the task
that requires additional cognitive resources beyond what is
required to understand iteration. To lessen the cognitive load
for the task, we lessen the extraneous cognitive load by asking
Lucia to program a loop with an iterator in a drag and drop
programming environment. Now Lucia can expend more of her
working memory on learning iteration.

IV. GENERATING PERSONALIZED TUTORIALS
I hypothesize that by generating personalized tutorials,

informed by CLT, we can improve the efficiency of learning
new programming concepts found in unfamiliar code for
novice programmers. Fundamentally, there are two ways to
improve the effectiveness of our generated tutorials by
employing CLT: 1) tracking the user’s intrinsic cognitive load
by modeling their programming expertise, and 2) reducing
extraneous cognitive load by carefully selecting programming
concepts that do not overwhelm a learner’s working memory.

A. Tracking Intrinsic Cognitive Load
In order to manage the user’s intrinsic cognitive load, we

need to select instructional tasks that are challenging but not
unrealistically difficult for a learner. In order to accomplish this
we need to have an understanding of the user’s current
programming expertise and what programming concepts are
contained within an unfamiliar piece of code. To accomplish
this, I plan to introduce a user model of the user’s
programming expertise to the tutorial generation process. I will
use this model when automatically generating tutorials to
carefully choose one programming concept to present to the
user that pushes the boundaries of the user’s expertise.

To build the user model, I plan to automatically examine a
user’s programs for how effectively they use programming
concepts. I will also measure the user’s cognitive load when
following a tutorial and associate the programming concept
from the tutorial with the user’s current cognitive load. To
measure the user’s cognitive load, I will use a CLT
unidimensional rating scale to measure a user’s mental effort
during tutorial presentation [10]. The CLT rating scale
technique, whereby a learner rates their mental effort on a scale
from 1 to 9, is a reliable and sensitive method to measure
mental effort [10]. Altogether, I believe that analyzing users’

programs and measuring their cognitive load can accurately
portray a user’s programming expertise.

B. Reducing Extraneous Cognitive Load
The current version of our generated tutorials likely has a

very high cognitive load because most of the steps in the
tutorial, while not directly related to new programming
constructs, are new information to the user. To effectively
manage the user’s working memory, I propose tailoring each
generated tutorial to only present a single programming
concept that meets or slightly expands upon the user’s
expertise. By employing the user model, I will build a tutorial
generation engine which selectively emphasizes tutorial
content for a single programming concept, thereby reducing the
cognitive load for this instructional task.

For complex programming concepts which have high
extraneous cognitive load, I will utilize the progressive method
to present the concept to the user. In the progressive method, a
simple version of a task is first presented to the learner [8].
Then, progressively over time as the intrinsic cognitive load is
reduced, present the entire task to the learner. For the generated
tutorials, this means gradually revealing difficult programming
concepts over a series of tutorials rather than one cognitively
burdensome tutorial.

By employing these CLT techniques, our generated
tutorials will be personalized to a learner’s skill set and
expertise. I will conduct a longer term evaluation to determine
if generated personalized tutorials are an effective way to help
novices learn new programming concepts.

REFERENCES
[1] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva, and S. R. Klemmer,

“Two studies of opportunistic programming: interleaving web foraging,
learning, and writing code,” in Proc. CHI, 2009.

[2] M. B. Rosson, J. Ballin, and J. Rode, “Who, What, and How: A Survey
of Informal and Professional Web Developers,” in Proc. VL/HCC, 2005.

[3] M. B. Rosson, J. Ballin, and H. Nash, “Everyday Programming:
Challenges and Opportunities for Informal Web Development,” in Proc.
VL/HCC, 2004.

[4] K. J. Harms, D. Cosgrove, S. Gray, and C. L. Kelleher, “Automatically
Generating Tutorials to Enable Middle School Children to Learn
Programming Independently,” in Proc. IDC, 2013.

[5] “Looking Glass.” [Online]. Available: http://lookingglass.wustl.edu.
[6] F. Grabler, M. Agrawala, W. Li, M. Dontcheva, and T. Igarashi,

“Generating photo manipulation tutorials by demonstration,” in Proc.
SIGGRAPH, 2009.

[7] J. Fernquist, T. Grossman, and G. Fitzmaurice, “Sketch-sketch
revolution: an engaging tutorial system for guided sketching and
application learning,” in Proc. UIST, 2011.

[8] J. J. G. van Merriënboer and J. Sweller, “Cognitive Load Theory and
Complex Learning: Recent Developments and Future Directions,” Educ.
Psychol. Rev., vol. 17, no. 2, pp. 147–177, Jun. 2005.

[9] J. J. G. van Merriënboer and P. Ayres, “Research on cognitive load
theory and its design implications for e-learning,” Educ. Technol. Res.
Dev., vol. 53, no. 3, pp. 5–13, Sep. 2005.

[10] F. Paas, J. E. Tuovinen, H. Tabbers, and P. W. M. Van Gerven,
“Cognitive Load Measurement as a Means to Advance Cognitive Load
Theory,” Educ. Psychol., vol. 38, no. 1, pp. 63–71, 2003.

