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I. INTRODUCTION 
Many programmers, including novices, often attempt to 

solve their coding problems by searching the web for example 
code [1]. Because these programmers are invested in their 
current project, they are motivated to discover a solution to 
their problem [2]. While searching the web for a solution, they 
may encounter source code that addresses their issue and also 
contains programming concepts that are new to user. 
Unfortunately, novice programmers often struggle to 
understand the source code and can fail to successfully 
integrate the code into their programs [3]. To help novice 
programmers understand unfamiliar source code, we propose 
automatically generating tutorials from source code to help 
these programmers acquire new programming skills in the 
course of working on their own chosen projects. 

In this paper, I describe our prior work on how 
automatically generating walk-through tutorials helps novice 
programmers learn new programming concepts found in 
unfamiliar code [4]. Following this, I introduce my proposal to 
use Cognitive Load Theory to improve the effectiveness of 
learning new programming concepts from generated tutorials. 
To accomplish this, I propose automatically generating 
personalized tutorials based on a user’s programming 
expertise. 

II. AUTOMATICALLY GENERATING TUTORIALS 
We initially hypothesized that novice programmers would 

effectively learn programming constructs from automatically 
generated interactive, in-context tutorials that walk the user 
through every step necessary to reconstruct unfamiliar code 
within their program [4]. To evaluate our hypothesis we 
developed automatically generated programming tutorials in 
the novice programming environment Looking Glass [5]. To 
automatically generate a tutorial, we use a model-driven 
architecture to translate each statement in the code into a 
sequence of actions that a user must take in order to reconstruct 
that statement. 

We conducted an evaluation to assess whether the 
generated tutorials would help users learn new programming 
concepts found within unfamiliar code. We asked participants 
to complete several near transfer tasks that required the use of a 
programming concept found in the unfamiliar code. Compared 
to the control condition, whose participants did not complete a 

tutorial, the users in the experimental condition performed 64% 
better on the near transfer tasks. While the experimental 
condition did perform better than the control condition, users 
given the tutorial only averaged a 52.2% success rate when 
completing the near transfer tasks. This result advocates for 
refining the tutorials to improve their effectiveness. 

Interestingly, the limited learning that occurred in our 
evaluation is predicted by Cognitive Load Theory. 
Fundamentally, learning depends on working memory, which 
is a necessary and limited resource that can be easily 
overwhelmed. Upon reflection, we believe our generated 
tutorials present too much information for the user to absorb 
and thereby overwhelm the user’s working memory. The 
tutorials contained a step for every action required to 
reconstruct the code. However, many of these tutorial steps are 
unrelated to programming constructs; instead these steps 
configure the state of the interface (e.g. selecting a tab). In fact, 
the number of steps related to a programming construct for a 
tutorial averaged 17% of the total steps. Cognitive Load 
Theory suggests that many extraneous steps will increase 
cognitive load and reduce learning. 

We predict that by employing techniques from Cognitive 
Load Theory we can improve the effectiveness of our 
generated tutorials by personalizing each tutorial to a user’s 
programming expertise. While other generated tutorial systems 
do exist for photo manipulation [6] or drawing [7], we are 
unaware of any tutorial generation system that generates 
personalized tutorials based on user expertise. 

III. COGNITIVE LOAD THEORY 
Cognitive Load Theory (CLT) suggests that by carefully 

managing the working memory needs of a learner during an 
instructional task, we can increase the efficiency of learning 
[8]. Conversely, if a task overwhelms working memory 
capacity, learning will not occur [8]. A learner’s working 
memory is affected by both intrinsic and extraneous cognitive 
load for an instructional task. 

Intrinsic cognitive load is the inherent complexity of a task 
for a learner. Because intrinsic cognitive load is grounded by 
the learner’s expertise, intrinsic cognitive load cannot be 
altered by the design of an instructional task. 

Extraneous cognitive load is the extra load beyond the 
intrinsic cognitive load that is not necessary for learning a 



concept, but is generated by the manner in which an 
instructional task is presented to a learner [8]. Extraneous 
cognitive load is controlled by changing the design of the task. 
Often an instructional task will require cognitive resources that 
are not directly related to the learning objective. An effective 
way to lower the extraneous load in this situation is to tailor 
each instructional task to the learner’s expertise by eliminating 
the elements that are not necessary for the concept [9]. In this 
way, a learner’s working memory can be devoted more fully to 
understanding the desired concept. 

Imagine the following scenario. We would like Lucia, a 
novice programmer, to understand how to use an iterator in a 
loop. If we ask Lucia to program a loop with an iterator in a 
traditional programming language, she would also need to 
learn the programming syntax for the iterator. The 
programming syntax adds extraneous cognitive load to the task 
that requires additional cognitive resources beyond what is 
required to understand iteration. To lessen the cognitive load 
for the task, we lessen the extraneous cognitive load by asking 
Lucia to program a loop with an iterator in a drag and drop 
programming environment. Now Lucia can expend more of her 
working memory on learning iteration. 

IV. GENERATING PERSONALIZED TUTORIALS 
I hypothesize that by generating personalized tutorials, 

informed by CLT, we can improve the efficiency of learning 
new programming concepts found in unfamiliar code for 
novice programmers. Fundamentally, there are two ways to 
improve the effectiveness of our generated tutorials by 
employing CLT: 1) tracking the user’s intrinsic cognitive load 
by modeling their programming expertise, and 2) reducing 
extraneous cognitive load by carefully selecting programming 
concepts that do not overwhelm a learner’s working memory. 

A. Tracking Intrinsic Cognitive Load 
In order to manage the user’s intrinsic cognitive load, we 

need to select instructional tasks that are challenging but not 
unrealistically difficult for a learner. In order to accomplish this 
we need to have an understanding of the user’s current 
programming expertise and what programming concepts are 
contained within an unfamiliar piece of code. To accomplish 
this, I plan to introduce a user model of the user’s 
programming expertise to the tutorial generation process. I will 
use this model when automatically generating tutorials to 
carefully choose one programming concept to present to the 
user that pushes the boundaries of the user’s expertise. 

To build the user model, I plan to automatically examine a 
user’s programs for how effectively they use programming 
concepts. I will also measure the user’s cognitive load when 
following a tutorial and associate the programming concept 
from the tutorial with the user’s current cognitive load. To 
measure the user’s cognitive load, I will use a CLT 
unidimensional rating scale to measure a user’s mental effort 
during tutorial presentation [10]. The CLT rating scale 
technique, whereby a learner rates their mental effort on a scale 
from 1 to 9, is a reliable and sensitive method to measure 
mental effort [10]. Altogether, I believe that analyzing users’ 

programs and measuring their cognitive load can accurately 
portray a user’s programming expertise.  

B. Reducing Extraneous Cognitive Load 
The current version of our generated tutorials likely has a 

very high cognitive load because most of the steps in the 
tutorial, while not directly related to new programming 
constructs, are new information to the user. To effectively 
manage the user’s working memory, I propose tailoring each 
generated tutorial to only present a single programming 
concept that meets or slightly expands upon the user’s 
expertise. By employing the user model, I will build a tutorial 
generation engine which selectively emphasizes tutorial 
content for a single programming concept, thereby reducing the 
cognitive load for this instructional task. 

For complex programming concepts which have high 
extraneous cognitive load, I will utilize the progressive method 
to present the concept to the user. In the progressive method, a 
simple version of a task is first presented to the learner [8]. 
Then, progressively over time as the intrinsic cognitive load is 
reduced, present the entire task to the learner. For the generated 
tutorials, this means gradually revealing difficult programming 
concepts over a series of tutorials rather than one cognitively 
burdensome tutorial. 

By employing these CLT techniques, our generated 
tutorials will be personalized to a learner’s skill set and 
expertise. I will conduct a longer term evaluation to determine 
if generated personalized tutorials are an effective way to help 
novices learn new programming concepts. 
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