
Enabling Code Adaptation for Non-Programmers

Paul Gross
Washington University in St. Louis

grosspa@cse.wustl.edu

1. Introduction

Online code repositories’ growth presents new
learning opportunities for end-users. Examples of
various program features, both novice and advanced,
are present for anyone to explore. However, the utility
of these examples varies by an end-user’s experience
level. For instance, a user may observe a program
output feature they want (e.g., a button rollover) in an
unfamiliar program. An inexperienced end-user may
be unable to find this code of interest and extract it for
their use. Further, if a user can find the responsible
code and extract it, they may be unable to successfully
integrate the code into their work due to differences in
code structure, dependencies they do not recognize, or
other possible issues. End-users potential difficulty
with using these examples, particularly those with no
programming experience, or non-programmers, may
inhibit their learning from these highly available and
varied programming resources.

To help end-users utilize these resources we
propose a software solution to assist in this code
adaptation process. Our goal is to support this process
without requiring end-user programming experience
by leveraging the intuitive connection between the
timing of graphical program output and executing
code.

2. Related Work

Software Adaptation [1] studies component

reusability at many functional levels and is more
concerned with choosing software components than
users reading and selecting program code. Ko et al. [5]
researched how experienced developers find and use
information in code maintenance tasks which includes
finding responsible code. Similarly the Whyline [4]
and WYSIWYT [6] presented different interactions for
end-user fault localization. Sato, Shizuki, and Tanaka
[7] proposed ORCA to relate transitioning GUI
elements with executing code in a single treemap view.

3. Methods

The initial target programming environment for our

software solution is Looking Glass, the next version of
Storytelling Alice [3]. Looking Glass allows users to
create interactive 3D animated stories by writing
programs that invoke methods (e.g., walk, say) on
objects (e.g., fairy, person). Although Looking Glass is
neither a general purpose IDE nor language, it does
make program code approachable for our non-
programmer target group. Looking Glass has graphical
output, intuitive code, and syntax error prevention.

The code adaptation process begins with finding
code responsible for observed graphical output
functionality, thus we began with this problem. To
assist non-programmers in finding responsible code
requires discovering what information non-
programmers naturally use in their search, what natural
processes they employ with that information, and
where these processes fail.

We explored 14 non-programmers’ natural search
processes when asked to find code responsible for an
observable program output. Subjects successfully
identified the correct code on 41% of tasks. We
examined what types of searches types users employed
(e.g., keyword scanning, narrowing search space
through timing) and what barriers inhibited their
performance (e.g., misinterpreting methods, ignoring
execution flow changes, not fully navigating code) [2].

To address the most prominent user struggles in
finding code we developed Hastings. Hastings allows
users to explore a program’s execution after it runs
with an execution time slider, a screen shot of the
graphical output at the current time, a list of methods
executing at the current time, and an annotated code
view showing what lines of code executed and in what
order. Users can correlate the output view to what code
was executing. This correlation assists them in
understanding what a method did and how execution
flow changed. The code views afford code navigation
features helping users find all relevant code.

To evaluate Hastings effectiveness we will conduct
another user study similar to before. This study
instance will have three user groups: without search
support, with a debugger, and with our software. We
compare with a debugger because it is a commonly
available tool that can relate lines of code to output
functionality timing through breakpoints and stepping.
We will evaluate groups’ performance by the
percentage of correct answers and average time taken
per task. The result will determine if our software does
improve users’ performance in finding responsible
code and if it is better than a debugger for these tasks.

Once we have successful software for finding code
of interest we can explore the next adaptation process
step of extracting code and reusing it elsewhere. We
will construct a prototype system allowing users to
specify the code of interest’s beginning and ending,
“copy” it out, and “paste” it in other programs. We will
conduct a user study to evaluate the software’s
usability for non-programmers. We will qualitatively
analyze the difficulties we observe users experiencing
and process descriptions they verbalize. Both will help
determine the best support to mark code for extraction,
what prompts are necessary to collect relevant code
reuse information, and how to present the process
intuitively in software to non-programmers.

Having a software solution for finding and
extracting in the code adaptation process we must
evaluate how it compares to other solutions. We will
run a user test with four user groups: without support,
a debugger with “primitive” copy and paste (e.g., no
support for resolving context changes), our finding
code support and primitive copy and paste, and with
our full software solution. We will again measure the
percentage of correct answers and average time taken
to determine if our software is an effective solution.

With support for finding and extracting code we
can finally approach integration. To support
integration requires investigating difficulties users
experience tailoring reused code to their wants. With
another exploratory non-programmer user study, we
will quantitatively and qualitatively analyze what
extracted code designs and types of modifications
frustrate users. Diagnosing these frustrations will
enlighten any redesign of extraction to minimize these
problems and design of further interactions to assist in
integration.

4. Current Status

Currently we are prototyping interactions for
extracting code “scripts” through Hastings and
seamlessly using scripts in another program. Users

bound the code containing features they desire and use
this to create a script. Each script has roles
corresponding to the actions taken by a given actor and
these roles are named by the user for reuse purposes. A
user can use a script with a particular program by
assigning program objects to script roles and our
software creates the code with the appropriate actors
without syntax errors.

Additionally we are developing a debugger system
for Looking Glass to be used in our Hastings
evaluation user study.

5. Implications

Non-programmers in our domain are similar to non-
programmers in other domains because they likely
have the same preconceptions, strategies, and
difficulties we identify and accommodate. Thus
providing a software solution for non-programmer
code adaption in one domain lays a foundation for
adaptation solutions in other end-user domains (e.g.,
web programming, Photoshop plug-ins). These
domains have examples on the web and support for
adapting them will help end- users use these examples
with less required knowledge.

6. References

[1] C. Canal, J. Murillo, and P. Poizat, "Software
adaptation," L’objet, v. 12, pp. 9-31, 2006.
[2] P. Gross and C. Kelleher, “Non-programmers
Identifying Functionality in Unfamiliar Code: Strategies and
Barriers,” To appear in Proc. of VLHCC 2009.
[3] C. Kelleher, R. Pausch, and S. Kiesler, "Storytelling
alice motivates middle school girls to learn computer
programming," in Proc. of CHI, 2007, pp. 1455-1464.
[4] A. J. Ko and B. A. Myers, "Designing the whyline: a
debugging interface for asking questions about program
behavior," in Proc. of CHI, 2004, pp. 151-158.
[5] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung,
"An Exploratory Study of How Developers Seek, Relate, and
Collect Relevant Information during Software Maintenance
Tasks," IEEE Trans .on, Soft. Eng., v. 32, pp. 971-987, 2006.
[6] J. R. Ruthruff, S. Prabhakararao, J. Reichwein, C. Cook,
E. Creswick, and M. Burnett, "Interactive, visual fault
localization support for end-user programmers," Journal of
Visual Languages & Computing, v. 16, pp. 3-40, 2005.
[7] T. Sato, B. Shizuki, and J. Tanaka, "Support for
Understanding GUI Programs by Visualizing Execution
Traces Synchronized with Screen Transitions," in Proc. of
ICPC 2008, pp. 272-275.

