
A Code Reuse Interface for Non-Programmer Middle School
Students

Paul Gross1, Micah Herstand1, Jordana Hodges2, Caitlin Kelleher1

Washington University in St. Louis1

One Brookings Dr., St. Louis, MO 63130
{grosspa, herstandm, ckelleher}@cse.wustl.edu

The University of North Carolina at Charlotte2

9201 University City Blvd, Charlotte, NC 28223
jwhodge1@uncc.edu

ABSTRACT
We describe a code reuse tool for use in the Looking Glass
IDE, the successor to Storytelling Alice [17], which enables
middle school students with little to no programming
experience to reuse functionality they find in programs
written by others. Users (1) record a feature to reuse, (2)
find code responsible for the feature, (3) abstract the code
into a reusable Actionscript by describing object “roles”,
and (4) integrate the Actionscript into another program. An
exploratory study with middle school students indicates
they can successfully reuse code. Further, thirty-six of the
forty-seven users appropriated new programming constructs
through the process of reuse.

Author Keywords
Code reuse, non-programmer, middle school, Looking
Glass, Storytelling Alice.

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI):
Miscellaneous.

INTRODUCTION
Middle school is a critical time when many students,
particularly female students, decide whether or not they are
interested in pursuing math and science based careers [7,
36]. At a time when the gap between male and female
participation in undergraduate computer science is
widening [37], the rarity of computer science teachers and
opportunities to explore computing at the middle school
level is unfortunate. Programming environments that
provide a motivating and supportive context for learning to
program may help increase the number of students
interested in exploring computing.

Prior research on programming environments demonstrated
that storytelling can provide a compelling context to learn
computer programming in, particularly for middle school
girls [17]. A formal study of girls’ programming behavior

found that users of Storytelling Alice were more than three
times as likely to sneak extra time to program than users of
a non-story based version of the same environment [18].
While encouraging, this study focused solely on users’ first
two to three hours of programming.

Enabling middle school students to learn new skills by
reusing and adapting each others’ code may enable more
middle school students to explore computer programming
longer term. Towards this goal, this paper introduces an
interface for middle school students to reuse others’ code
without requiring they understand the program code.

Imagine that a user named Eva is creating an animation that
tells a story about a girl, who develops super strength
(Melly). Eva remembers seeing a story in which a secret
agent character jumped into an evil doctor and the doctor
toppled over. Eva wants Melly to jump into a house and
knock it over.

To enable this, our code reuse tool guides users through the
processes of selecting and integrating code [13].
Specifically users:

1. Record the execution of the program containing the
functionality of interest.

2. Identify the beginning and ending of the functionality of
interest.

3. Abstract the code by describing the roles that each
character in the functionality plays.

This abstracted version of the code is saved as an
Actionscript. To use the Actionscript, a user selects
characters from the new program to act out the roles in the
Actionscript.

To explore the potential for code reuse tools in a social
learning environment, we conducted an exploratory study in
the context of a summer science camp for at-risk middle
school students. We found that users were able to
successfully reuse code with our tool. Further, the process
of selecting code for reuse helped some users to develop an
understanding of new programming constructs, which they
successfully used outside of the context of Actionscripts. A
next step, we plan to generate tutorials that will guide users
through creating the code in their new program.

RELATED WORK
Our related work spans two areas: software reuse and end-
user program sharing.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2009, April 4–9, 2009, Boston, Massachusetts, USA.
Copyright 2009 ACM 978-1-60558-246-7/09/04...$5.00.

Software Reuse
Researchers have identified a number of activities that are a
part of code reuse [20, 26, 29]. Holmes [13] suggests that
code reuse consists of three fundamental phases: location,
selection, and integration. While much of the research in
code reuse focuses on professional developers [35], some
researchers have explored small-scale reuse [4]. Other work
explores reuse through demonstration [10, 22].

Location
During the location stage a user searches for software
artifacts that may contain source code relevant to their task
(not to be confused with searching in source code to
determine if part of it is suitable for reuse). Many tools exist
for assisting programmers in locating relevant source code
(reviews in [14, 23, 27]). Some recent work focuses on
finding code examples either on the web [11] or through
tools integrated with an IDE [1, 8, 14, 31, 34].

Selection
In the selection phase a user tries to identify the code
responsible for functionality of interest, understand it, and
determine its reusability.

The process of identifying and understanding the code
responsible for particular functionality is difficult for non-
programmers [9]. Systems for end user programmers, who
typically have limited programming experience, employ a
variety of techniques to help users identify and understand
relevant code. FireCrystal [28] enables users to record web
browser events and view the Javascript and CSS code that
executed as a result of the events. The WYSIWYT
spreadsheet environment [30] helps provides a visualization
of cell dependencies. The Whyline [19] allows end-users to
pose “why” and “why not” questions about program
behavior and receive answers directly related to runtime
information.

Program understanding tools typically employ program
visualizations to help professional programmers grapple
with feature and fault localization (e.g., [21, 24, 32, 33]).
Effective use of these visualizations requires knowledge
that non-programmers are unlikely to have.

Integration
For the integration phase a user must insert the selected
code into their own code and adapt it for their context. For
Java developers, Jigsaw [4] evaluates structural and
semantic information from a code source to manage
dependencies and recreate missing functionality during
integration to a new program. CReN [15] and CloneTracker
[5] attempt to manage variable references in multiple
cloned code locations.

Currently there are no tools for general, end-to-end
software reuse [13]. However, d.mix, a recent web
programming system, helps users with the selection and
integration steps. Using d.mix, a user can identify reusable
components on an arbitrary web page, select components to

reuse, and integrate them into a working wiki page [10].
Like d.mix, our system supports non-programmers through
the selection and integration steps, however d.mix generates
static web API calls where our system can capture and reuse
dynamic behaviors.

End-user Program Sharing
There is a long history of designing programming
environments for novice programmers [16]. To the best of
our knowledge, none of these systems focus on enabling
code reuse. Users of MOOSE Crossing could copy and
customize or extend scripts written by other users [2].
Scratch [25] directly supports sharing through a web
repository, but users share entire programs and there is no
integration support for reusing sprite behaviors dependent
on other sprites.

LOOKING GLASS
We built our code reuse tools into Looking Glass, the
successor to Storytelling Alice that is currently under
development. Like Storytelling Alice, Looking Glass is
designed to enable users to create interactive 3D animated
stories. To prevent users from making syntax errors,
Looking Glass users drag graphical tiles representing
methods or programming constructs, drop them into a
program editor area, and select parameter values through
pop-up menus. Figure 1 shows the process of adding a line
of code in Looking Glass. The environment supports
common programming constructs such as loops and if-
statements. Additionally, the do together construct enables
users to have statements in Looking Glass execute
concurrently.

CODE REUSE TOOLS
To enable users to reuse functionality from programs
created by others, we must support them in three basic
activities:

1. Finding the code responsible for the target functionality.
2. Extracting the responsible code from its original

program.
3. Integrating the responsible code into a new context.

Figure 1. Looking Glass where a user programs by (1)
dragging a method, (2) dropping it into the code pane, and (3)

selecting parameters.

For experienced programmers, an intelligent copy and paste
system might be sufficient to enable code reuse. However,
our goal is to enable new programmers to reuse code
without requiring they understand how that code works. In
an educational system, this may seem strange. Our eventual
goal is to have users select functionality they want to reuse
and then complete a tutorial guiding them through building
that functionality in their own program. We believe the high
level strategy of selecting code without fully understanding
it and reconstructing the code to build understanding has
two strong advantages:

1. If users build the selected functionality step by step,
they will see the impact of each new line and each
change. We believe it is easier for users to understand
new functionality by constructing it rather than by
exploring potentially complex, fully functional code.

2. Users are motivated to build their own stories [17]. We
believe that enabling users to construct the new
functionality in the context of their own story will align
with their natural motivation.

To help users find the code responsible for functionality
they want to reuse, we enable users to navigate the code
based on observable output. Once users identify the begin
and end points of the functionality they want to reuse, they
can extract the identified function ality and integrate it into
another program using wizard-style interfaces.

Identifying Functionality for Reuse
Previous research on how new programmers approach the
problem of identifying the code responsible for observable
output found that new programmers employ a cyclic search
process. New programmers (1) identify a search target in
the output (or code), (2) search for potentially matching
lines of code (or output actions) and (3) repeat (changing
from output to code or vice versa) until there are enough
matches to form a solution. This process was not very

successful for non-programmers; users successfully found
the code responsible for a specific output feature only 41%
of the time [9].

The study identified several barriers contributing to non-
programmers lack of success, including:

1. Users struggle to match their motion descriptions to
method names and parameters in the code.

2. Users often fail to fully navigate relevant code.
3. Users do not recognize temporal relationships in

programs containing constructs such as loops, do
togethers (i.e., a concurrency block), or method calls.

We designed a history tool to address these barriers by
helping users identify what code is executing and connect
the code with visual output. This history tool is integrated
into the code reuse process. The history tool interface
includes four components: 1) the Time Slider, 2) the Scene
Viewer, 3), the Current Actions Pane, and 4) the Code View
Pane (Figure 2).

The Time Slider (1) enables users to scrub forward and
backward through the program’s recorded history.

Figure 2. The History tool interface: (1) Time Slider for
scrubbing through time, (2) Scene Viewer shows the scene at

the selected time, (3) Current Actions Pane shows what
actions characters did at the selected time, and (4) Annotated

Code View selects the executing line of code, affords block and
statement playback and navigational controls.

The Scene Viewer (2) displays the scene’s appearance at the
selected time. To find a particular action of interest, a user
can scrub through recorded history using the time slider
until he or she sees the action of interest happening in the
scene viewer.

The Current Actions Pane (3) shows all methods executing
at the selected time, organized by character. To determine
what a particular character (for example, the LunchLady)
was doing at the selected time, the user can expand the
“LunchLady’s Actions”. The expanded view shows which
individual statements were executing, and the methods from
which they were called. The user can navigate to a
particular statement or method call by clicking on it. The
Code View Pane will update to display the statement that
the user clicked.

Finally, the Code View Pane (4) presents a view of the
executed code in the latest run of the program. The
statement that executed at the selected time is highlighted in
green. A play button next to the executing statement enables
users to play back all of the images captured while that
statement executed. Buttons on the right side of the
interface enable users to zoom in on block statements

Figure 4. Recording the program to capture
a feature for reuse.

Figure 3. Overview of process for selecting and integrating code for reuse.

Record the execution of a program until the
desired action has completed.

(1)

Bind the relevant code.
(2)

Abstract objects by
prompting for role

names
(3)

Save the
Actionscript
in a library
for reuse.

(4)

Assign roles with objects
in destination program.

(5)

Run the new program with the adapted code.
(6)

Figure 3. Overview of process for selecting and integrating code for reuse.

Wizards for Extraction and Integration
A wizard style interface guides users through extracting the
selected code. This extracted code is abstracted and saved
into an intermediary form we call an Actionscript.

A second wizard style interface allows users to select which
characters will perform the actions recorded in the
Actionscript. After users assign characters to each role in
the Actionscript, we generate the code necessary for the
actions encoded in the Actionscript.

Figure 3 shows an overview of the process for identifying
and reusing a section of code. In the remainder of this
section we describe the process of reusing a section of code.

Usage Scenario – Recording an Actionscript
In the introduction, we described a scenario in which a user
named Eva wants to reuse an agent’s jumping and knocking
over an evil doctor in her super strong Melly story. Creating
an Actionscript for the jump and knock over requires five
steps that are presented through a wizard like interface

Step 1: Eva records the actions occurring in the agent’s
story (i.e., the tool constructs a dynamic execution trace)
until after the agent’s fall is complete. At the bottom of the
record panel, Eva clicks a next button (see Figure 4) which
loads the history tool to help her find where the agent’s
jump and fall begins and ends (see Figure 5).

Step 2: To find where the agent began to jump, Eva drags
the time slider (Fig. 5a, circle 1) back until she sees the
agent start to move up (Fig. 5a, circle 2). At the selected
time, the current actions pane (Fig. 5b) indicates the agent
and the doctor are active. Users’ programs often contain
simultaneously executing statements using the do together
construct [9].

Because Eva is interested in the agent’s actions, she
expands “agent’s Actions” in the Current Actions Pane. In
this example, Eva clicks on move up. This action occurs
within the method jumpkick which is not currently shown
in the code view (Fig 5a, circle 4). When Eva clicks the

link, the history tool opens the jumpkick method in the
code view and selects the move up method in green (Fig.
5c). Eva clicks the play button to the statement’s left which
animates through the series of images recorded while the
line of code executed.

At this point, Eva has found the beginning of the actions
that comprise the jump and knock over. She selects the
“start” arrow next to the move up action to indicate that the
code to reuse begins with this action.

Step 3: To find the end action, Eva can scrub forward in
time to find where the doctor falls. She can use a similar
process to identify the final method call that is a part of the
functionality to reuse.

Step 4: With the beginning and ending of the functionality
she wants to reuse identified, Eva can play through the
selected actions to confirm she selected the correct
functionality (see Figure 6). If Eva decides that she prefers
a different beginning or ending, she can return to the
previous steps to make changes.

Step 5: In the final step, Eva names and describes her
Actionscript (see Figure 7). The names and descriptions
help her to remember the functionality in the Actionscript
and what each character did. Eva names her Actionscript
“Jump and Knock Down” and describes the roles each
character played in the extracted code. In this example, she
describes the agent’s role as “Jumper” and the doctor’s role
as “Thing knocked over”. Looking Glass saves the
completed Actionscript in Eva’s library for later use.

Figure 5. (a) The history tool for selecting the beginning of a feature. (b) After expanding an object’s current actions to see action
links. (c) After clicking an action link to show a new method in the code view and selecting a statement as the beginning.

Figure 7. Abstracting the selected code into an Actionscript by
naming object’s roles

Usage Scenario-Using an Actionscript
To use her Actionscript, Eva opens the super strength Melly
program and her Actionscript library (see Figure 8). She
selects the “Jump and Knock Down” Actionscript she
recorded earlier.

To incorporate the jump and knock down into her current
program, Eva selects the character who she wants to jump
and knock over another object (see Figure 9).

Once Eva assigns all roles and presses “Add Actionscript”,
Looking Glass generates all the code necessary for the
chosen actors to perform the actions recorded in the script.
The code is stored in a global method called
“Jump_and_Knock_Down” which Eva can invoke or edit
(see Figure 10). Looking Glass also adds an invocation of
Jump_And_Knock_Down to the beginning of the program
so Eva may immediately view it by running the program.

IMPLEMENTATION
Our system for code selection and integration has four basic
steps:

1. We capture a full execution trace enabling users to link
program statements with observable output in the user
interface.

2. Using the beginning and ending statements selected by
the user, we prune the execution tree.

3. To enable later integration, we determine the types that
can fill roles in the Actionscript.

4. When the user integrates an Actionscript, we generate
new code based on which characters and scenery objects
the user selects to play each role.

Recording an Execution Tree
To enable users to select code responsible for observable
functionality, we record a dynamic trace of the program
execution. The trace is organized into a tree reflecting the
hierarchical program execution. Code block executions and
invocations of editable methods make up the internal nodes,
while invocations of atomic, un-editable methods naturally
form the leaves of the tree. Each node stores an executing
statement, its execution period, its thread and its expression
evaluations. The expression evaluations allow us to display
the actual values used as parameters and the name of target
objects in the user interface.

Additionally, we capture screenshots of the output
continuously. These screenshots are indexed by the
execution timestamp for use in the interface.

Identifying the Relevant Code to Reuse
To identify the relevant code, we prune the tree based on
time constraints and re-insert necessary declarations.

Pruning with Time Constraints

Through the user interface, the user selects a start and end
statement in the program. We identify the corresponding
nodes in the execution tree and use their execution periods
as a time range. Statements irrelevant to the user’s desired
functionality can execute concurrently during this time
range (e.g., a character says something during the agent’s
jumpkick). To prevent the irrelevant statements inclusion,

Figure 8. Choosing to an Actionscript to reuse.

Figure 9. Choosing objects to play the roles that were
recorded in the ActionScript.

Figure 6. Reviewing an Actionscript to
ensure the feature is captured.

Figure 10. The Actionscript is added as a global method

we find a common ancestor of the start node and the end
node. The shared ancestor’s child nodes executing during
the selected time range are marked as relevant.

If a code section exists as a child of the shared ancestor and
does not execute (e.g., a conditional branch that does not
execute), it is considered irrelevant. Using this condition
ensures only code relevant to what the user observed will be
copied. We relax this constraint if a user specifies a start
and end nodes with no common ancestor. This is possible in
other programming environments supporting user events.

Re-Inserting Declarations
Unresolved references can exist in the pruned relevant
code. For instance, the first relevant statement may
reference the variable speed which is declared before the
relevant code. To account for this, we record any local
declarations or modifications occurring in scope of the
shared ancestor and before the first relevant statement. Then
if a relevant statement references an undeclared local
variable, we mark any recorded statements declaring or
modifying the local variable as relevant and insert them in
the Actionscript before all other relevant code. This ensures
all local references are accounted for in the integration step.

Determining Role Integration Types
To determine which characters and scenery objects can
safely fill roles in an Actionscript, we determine a role’s
lowest type reference. For instance, if the agent invokes a
walk method then the agent’s role cannot be filled by a
table object because the table does not inherit from the class
implementing the walk method. However, if the agent only
invoked a turn method, a table can take the agent’s role
because it does inherit from the class implementing turn.
We crawl the pruned tree to generate the full set of direct
and indirect references to each of the characters and scenery
objects in the relevant code. We use the results of
expressions evaluated at runtime (e.g., function result,
variable access) to resolve indirect references. The
expressions’ types determine a role’s lowest type reference.

We make two exceptions, specific to Looking Glass, in
determining a role’s lowest type reference: getPart
invocations, and user created methods and fields.

The getPart method is not an inherited or abstract method
but is implemented in all character classes to get references
to parts of a character (e.g., get the agent’s head). Character
classes are leaves in the class hierarchy tree and thus roles
of these types would be unassignable to other objects.

User methods and fields are special because they do not
actually exist in the Java code hierarchy. They exist only in
the Looking Glass project they are used. However, we can
create these methods and fields for any object filling a role.
Type safety is ensured for code in user methods because it
is also crawled for role references.

With crawling complete the extracted code is parameterized
by the roles with all local and dynamic dependencies
accounted for. This parameterized code is stored in a file as
one parent method, corresponding to the shared ancestor,
along with role information. This allows an Actionscript to
be fully self-contained and reusable.

Integrating an Actionscript
When the user selects an Actionscript to use in a program,
the user chooses objects to fill the roles and to resolve any
problems that arise with the parts of objects.

Using the roles’ lowest type information, we present users
with a list of characters and scenery objects that can safely
fill the role. Once all roles are assigned, we create a map of
roles and the objects filling those roles. A copier takes the
map, substitutes all references, and copies all code into the
user’s program.

Looking Glass tries to match object parts referenced in a
getPart invocation by name (e.g., if a magician’s hat is used
and the user selects a samurai who has a hat to fill
magician’s role, then the samurai’s hat is substituted). If no
matching name is found, Looking Glass prompts the user to
choose a substitute part. This prevents the program from
generating a run-time error because the new object does not
have the same body parts as the original object.

All copied code is placed into a user method declared by
the Scene object (i.e., a global object in all Looking Glass
programs) and given the name of the Actionscript. This
avoids scoping issues as all objects in a Looking Glass
program are fields of the Scene. By declaring the method in
the Scene’s class it essentially becomes a global method the
user can invoke in any context. With all local and dynamic
references previously managed by the crawler, the copying
process is deterministic, creating user methods and fields in
other classes as necessary.

Implementation Limitations
This approach has two major limiting factors: design
choices focused on supporting middle school students and
the need for visual feedback.

Because Looking Glass is designed for middle school
students, we elected not to support full inheritance through
the programming environment. Hence our implementation
cannot resolve class hierarchy conflicts like other systems
for integration [4]. For instance, iterating over an array of
Samurais to invoke the Samurai class method backflip
cannot be abstracted to a super class with a backflip method
for two roles to inherit from. Thus we cannot assign two
different types of objects to fill the Samurais’ roles later.

Our intended audience for this tool is non-programmers and
we assume they identify desired functionality by observing
visual output. This assumption limits the generality of our
approach to systems with visual feedback relating directly
to code, such as dynamic web page behaviors.

CODE REUSE EVALUATION
To evaluate the potential use for our code reuse tools, we
conducted an exploratory study to answer several questions:

1. Can middle school users with little or no previous
programming experience successfully reuse code?

2. Does the process of selecting and reusing code help
middle school users extend their programming skills?

3. Will animations propagate through social networks?

Participants
We conducted this study within the context of a class for the
Exxon Mobil Bernard Harris Summer Science Camp held at
Washington University. The camp provides opportunities to
explore science and engineering for students with potential
to succeed but who may be at risk due to limited academic
opportunities in their school, family problems, or other
issues. The camp works with St. Louis teachers to identify
student who may benefit from attending. Campers are
accepted based on teacher recommendations and an essay.
The forty-seven students attending the camp this summer
were rising sixth through eighth graders. The group was
balanced by gender and predominantly African-American.

Camp Course
During the two week camp we oversaw two one week
classes: the first for twenty-four students and the second for
twenty-three students. Each class was to include four two
hour sessions. The first week was limited to three sessions
due to a network outage that made the lab unusable.

Evaluating Learning
To explore the potential for students to learn new
programming skills through reusing code, we intentionally
limited the formal instruction we provided the students.
During the first session we demonstrated adding a 3D
character, making characters perform actions by dragging
and dropping method invocations, and running the program.
We also introduced students to our code reuse interface.

To enable students to teach themselves new programming
concepts through reuse, we provided each student with
three example programs on each of the first three days. We
designed the three example programs to contain captivating
animations to be reused in other stories, and illustrate a set
of focus concepts for that day. The focal language concepts
and constructs for each day are listed below in Table 1.
Each day, the students had access to the programs for the
current day and all the previous days for that session.

To ensure example code was students’ primary learning
resource, researchers did not provide assistance to students.
Instead, researchers responded to help requests by
suggesting a relevant program in the example library.

Social Propagation
We are also interested in whether program functionality
may spread through different social groups. We created two
different types of groups: working groups and presentation

groups. While students actively built programs they sat with
members of their working group. Toward the end of each
session, we asked students to show the project they created
that day to the members of their presentation group. Each
working group contained eight students. Each presentation
group contained six students.

On the first three days of each class, we asked each student
to create a new program that incorporated two animations
reused from other programs. Each day we created two
example programs from which all working groups could
reuse animations. We also provided a third example
program, unique to each working group, intended to seed
novel animations into the presentation groups.

Presentation groups contained two students from each
working group. Students gathered in their presentation
groups to view other student’s programs constructed that
day. We encouraged students to reuse animations they
found captivating in their presentation group and offered
prizes to anyone whose unique animation was reused more
than once by other students.

Data
We collected three types of data: Actionscripts that
participants captured, programs using those Actionscripts,
and participants’ performance on a programming quiz given
during the final session of each camp class.

Scripts and Programs
Collecting participants’ Actionscripts and programs enabled
us to gather qualitative information about how users reuse
code with our system, what kinds of actions they capture,
and how they use those actions within their own creations.
We are interested in the potential for users to learn new
programming constructs or concepts through the process of
reuse. To ascertain the extent to which this happens, we
collected quantitative information about the constructs
participants use through their Actionscripts and
independently in their programs.

Post-camp quiz
At the end of the final session, participants took an eleven
item forced-choice programming quiz in which we asked
them to predict the behavior of short segments of Looking
Glass code. Each question presented a small snippet of code
and a series of four or five textual descriptions of how that
code might behave. We asked participants to select the best
description for each snippet of code. The questions on the
quiz covered simple uses of sequential and parallel
programming, count and while loops, iterating over a list,
parameter passing, and method calls.

Day 1 User methods, count loop, do together
Day 2 If/else, while loop, functions
Day 3 Sequential blocks in do togethers, sequential

iteration over a list, parallel execution over a list
Table 1. Concepts and constructs in daily example programs

Based on an exploratory factor analysis of the quiz
questions, we created a programming quiz scale that
included six questions loading on the same factor
(Cronbach’s α = 0.60). This factor reflects participants’
ability to predict basic constructs behavior including
sequential and parallel execution, parameter passing, loops,
method calls, and iterating over lists. An additional two
questions covered more advanced programming constructs:
if statements and parallel execution over a list.

Results
Forty-six of our forty-seven participants successfully
captured and reused code. The majority of their
Actionscripts, 77%, contain more than 5 lines of code
(Figure 11) which we consider non-trivial functionality.
Typical script content focused on a single character or an
exchange involving a small group of characters. This
content indicates a focus on capturing functionality which
can be used in a story that may be unrelated to the source.

Learning Through Reuse
We measured learning in two ways: 1) participants’
modification or use of new programming constructs in their
programs and 2) participants’ performance on the post-
workshop programming quiz.

Modification and Use of Programming Constructs
Thirty-six of our forty-seven participants either modified or
independently used programming constructs which were
only introduced through the process of reusing code.

Although our example programs used a variety of
constructs, we saw a strong concentration of Do Togethers
and Loops in the users’ Actionscripts. This construct
homogeneity limited the scope of learning. However, we
observed evidence that participants used creating and
modifying Actionscripts to learn new skills (see Table 2).
Table 2 shows participants usage of programming
constructs represented in the example programs.

We observed three levels of programming construct usage.
At the most basic level, users created Actionscripts
including a particular construct. In the next level users
explored the code created by Actionscripts in their
programs and modified one or more programming

constructs. At the most advanced level, users created new
sections of code which included programming constructs or
techniques they discovered through reuse. Due to the
emphasis on Do Together in the captured Actionscripts, we
see the greatest number of modifications and independent
uses of DoTogether statements. However, users also
frequently learned how to call functions to request and
animate the individual body parts of characters.

Programming
Group

Basic
Constructs

Advanced
Constructs

Low (n = 11) 3.9 0.7
High (n = 36) 4.7 1.0
Table 3: Average number of correct answers on

Post-camp Quiz by Programming Group

Figure 11. Frequency of Actionscript size (lines of code)

Programming Quiz Performance
We expect that learning will come primarily through
modifying code from an Actionscript or using constructs
discovered in an Actionscript to accomplish other goals. To
investigate this, we divided our participants into two groups
based on their programming behavior (see Table 3). The
Low programming group (11 participants) includes
participants who made no modifications and did not use
new programming constructs elsewhere in their programs.
The High programming group (36 participants) includes
participants who either modified the code in Actionscripts
or used programming constructs introduced through the
Actionscripts in other places of their program. Par ticipants
in the High programming group performed better on both
the programming quiz scale (r=.267, p < .1) and the two
questions on advanced constructs (r = .295, p < .05).

Discussion
Our results indicate a correlation between reuse and
construct learning. However, we have no evidence of a
casual relationship because construct learning is incidental
with this reuse process. These results do support further
investigation of reuse with tutorial reconstruction as an
explicit learning mechanism.

Social Propagation of Functionality
We did see animations propagate through the camp’s
working and presentation groups. Figure 12 shows how
participants captured and reused functionality from one
source program Skateboard World. During the first week of
camp, three yellow working group users made Actionscripts
containing animations from Skateboard World. Two of the
three then created worlds using their captured Actionscripts.
At the end of the first day, these users shared their programs
with their presentation groups. During the second day, users
from the red and blue working groups captured new
Actionscripts based on a yellow user’s world and used them
in their own programs. We see a similar reuse pattern for
the purple working group and this world during week two.

This social propagation of functionality may provide a
social channel through which users of Looking Glass can
teach each other new programming constructs.

Study Limitations
Study participants came from a pre-selected pool of at-risk
middle school students and took place in a highly motivated
setting. We believe our results can generalize to middle
school students of any ability level, but do require
motivating circumstances. To use Looking Glass and the
reuse process requires motivation, either extrinsic or
intrinsic, to overcome the gradual learning curve.

FUTURE WORK
Our interface enables middle school students to
successfully select and integrate code. Further, the results of
our exploratory study suggest the reuse process helps users
to build their repertoire of programming constructs.

Currently, our system does not support any customization
or modification of an existing Actionscript. However,
several users asked about modifications such as including
or excluding roles from an Actionscript or changing a
property that is set within the Actionscript. To enable this
type of interaction, we need to first understand what and
how non-programmers want to modify and customize their
Actionscripts. Enabling users to remove a role or modify a
specific action may increase the reusability and utility of
Actionscripts. The challenge lies in communicating with
non-programmers about these modifications.

Participants in our study selected Actionscripts that
included only a subset of the programming constructs
represented in the example set. We are considering an
interaction for watching and automatically recording from a
stream of Looking Glass programs called Looking Glass

Programming
Construct

User Captured
in Used Script

User
Modified

User
Added

Property Assign. 31 4 2
Function Call 38 1 10
Do Together 40 10 28
Count Loop 25 1 1
While Loop 2 0 0
For Each In Order 3 0 0
Each In Together 1 0 2
User Method Call 39 0 2

Table 2. Number of participants who captured a construct in
an Actionscript they used, modified the construct in a program

using the Actionscript, or added it independently.

Figure 12. Reuse originating from Skateboard World.
Black wave shapes are scripts and grey shapes are worlds.
Labels show creator with colors showing a user’s working
group and letters representing their presentation group.

TV. A user simply stops watching when they see something
they want and they can immediately begin the reuse
process. By maintaining a history of programming
constructs with which the user has experience, we may be
able to select examples for Looking Glass TV that help to
introduce new programming concepts.

While users seem to gradually increase their repertoire of
programming constructs through reuse, we believe the
process of constructing the code for an Actionscript may
make the learning process faster and more effective. We
plan to develop an automatic tutorial system that can guide
users through building the code for a given Actionscript.

REFERENCES
1. Brandt, J., Dontcheva, M., Weskamp, M., and Klemmer,

S.R. Example-Centric Programming: Integrating Web
Search into the Development Environment. Stanford
University Technical Report, CSTR-2009-01.

2. Bruckman, A. MOOSE Crossing: Construction,
Community, and Learning in a Networked Virtual World
for Kids. MIT Media Lab. Boston, MA., 1997.

3. Cottrell, R., Chang, J., Walker, R.J., and Denzinger, J.
Determining detailed structural correspondence for
generalization tasks. Proc. SIGSOFT, (2007), 165-174.

4. Cottrell, R., Walker, R.J., and Denzinger, J. Semi-
automating small-scale source code reuse via structural
correspondence. Proc. SIGSOFT (2008), 214-225.

5. Duala-Ekoko, E. and Robillard, M.P. Tracking Code
Clones in Evolving Software. Proc. ICSE (2007), 158-
167.

6. Fischer, G., Henninger, S., and Redmiles, D. Cognitive
tools for locating and comprehending software objects
for reuse. Proc. ICSE (1991), 318-328.

7. Gill, J. Shedding Some New Light on Old Truths:
Student Attitudes to School in Terms of Year Level and
Gender. Proc. of the American Educational Research
Association. (1994).

8. Goldman, M. and Miller, R. Codetrail: Connecting
source code and web resources. Proc. VL/HCC (2008),
65-72.

9. Gross, P. and Kelleher, C. Non-programmers Identifying
Functionality in Unfamiliar Code: Strategies and
Barriers. Proc. VL/HCC (2009), 75-82.

10.Hartmann, B., Wu, L., Collins, K., and Klemmer, S.R.
Programming by a sample: rapidly creating web
applications with d.mix. Proc. UIST, ACM (2007), 241-
250.

11. Hoffmann, R., Fogarty, J., and Weld, D.S. Assieme:
finding and leveraging implicit references in a web
search interface for programmers. Proc. UIST, ACM
(2007), 13-22.

12.Holmes, R., Walker, R., and Murphy, G. Approximate
Structural Context Matching: An Approach to
Recommend Relevant Examples. IEEE Trans. On Soft.
Eng. (2006), 952-970.

13.Holmes, R., Cottrell, R., Walker, R.J., and Denzinger, J.
The End-to-End Use of Source Code Examples: An
Exploratory Study. Proc. ICSM, (2009), to appear.

14.Holmes, R., Walker, R.J., and Murphy, G.C. Strathcona
example recommendation tool. Proc. ESEC/FSE, ACM
(2005), 237-240.

15.Jablonski, P. and Hou, D. CReN: a tool for tracking
copy-and-paste code clones and renaming identifiers
consistently in the IDE. Proc. OOPSLA, ACM (2007),
16-20.

16.Kelleher, C. and Pausch, R. Lowering the barriers to
programming: A taxonomy of programming
environments and languages for novice programmers.
ACM Comput. Surv. 37, 2 (2005), 83-137.

17.Kelleher, C. and Pausch, R. Using storytelling to
motivate programming. Comm. of ACM 50, 7 (2007),
58-64.

18.Kelleher, C., Pausch, R., and Kiesler, S. Storytelling
alice motivates middle school girls to learn computer
programming. Proc. CHI, ACM (2007), 1455-1464.

19.Ko, A.J. and Myers, B.A. Designing the whyline: a
debugging interface for asking questions about program
behavior Proc. CHI, ACM (2004), 151-158.

20.Krueger, C.W. Software reuse. ACM Comput. Surv. 24,
2 (1992), 131-183.

21.Lanza, M. CodeCrawler-lessons learned in building a
software visualization tool. Proc. CSMR, (2003), 409-
418.

22.Leshed, G., Haber, E.M., Matthews, T., and Lau, T.
CoScripter: automating & sharing how-to knowledge in
the enterprise. Proc. CHI, ACM (2008), 1719-1728.

23.Lucredio, D., Prado, A., and de Almeida, E. A survey on
software components search and retrieval. Proc.
Euromicro Conference (2004), 152-159.

24.Lukoit, K., Wilde, N., Stowell, S., and Hennessey, T.
TraceGraph: immediate visual location of software
features. Proc. ICSM, (2000), 33-39.

25.Maloney, J., Burd, L., Kafai, Y., Rusk, N., Silverman,
B., and Resnick, M. Scratch: a sneak preview
[education]. Proc. C5 (2004), 104-109.

26.Mili, H., Mili, F., and Mili, A. Reusing software: issues
and research directions. Software Engineering, IEEE
Trans. on Soft. Eng. 21, 6 (1995), 528-562.

27.Mili, A., Mili, R., and Mittermeir, R. A survey of
software reuse libraries. Annals of Soft. Eng. 5, 1 (1998),
349-414.

28.Olney, S. and Myers, B. FireCrystal: Understanding
Interactive Behaviors in Dynamic Web Pages. Proc.
VL/HCC, (2009), 105-108.

29.Prieto-Diaz, R. Status report: software reusability. IEEE
Software 10, 3 (1993), 61-66.

30.Ruthruff, J., Creswick, E., Burnett, M., et al. End-user
software visualizations for fault localization. Proc.
SoftVis, ACM (2003), 123-132.

31.Sahavechaphan, N. and Claypool, K. XSnippet: mining
for sample code. SIGPLAN Not. 41, 10 (2006), 413-
430.

32.Schafer, T., Eichberg, M., Haupt, M., and Mezini, M.
The SEXTANT Software Exploration Tool. IEEE Trans.
on Soft. Eng. 32, 9 (2006), 753-768.

33.Storey, M. and Muller, H. Manipulating and
documenting software structures using SHriMP views.
Proc. ICSM, (1995), 275-284.

34.Thummalapenta, S. and Xie, T. Parseweb: a programmer
assistant for reusing open source code on the web. Proc.
ASE, ACM (2007), 204-213.

35.Yongbeom Kim and Stohr, E.A. Software Reuse: Survey
and Research Directions. Journal of Management Info.
Sys. 14, 4 (1998), 113-147.

36.Zimmer, L. and Bennett, S. Gender differences on the
California statewide assessment of attitudes and
achievement in science. Proc. of the American
Educational Research Association, (1987).

37.Zweben, S. 2007-2008 Taulbee Survey. Computing
Research News 21, 3 (2009), 8-23.

