
Toward Transforming Freely Available Source Code into
Usable Learning Materials for End-Users

Paul Gross and Caitlin Kelleher
Department of Computer Science and Engineering

Washington University in St. Louis
{grosspa,ckelleher}@cse.wustl.edu

ABSTRACT
The availability of example source code on the web presents
an array of potential learning resources for any code con-
sumer. However not all code consumers may find these re-
sources usable. With end-user programmers increasingly re-
lying on example code on the web, any difficulty can prevent
these code resources from reaching their potential as learn-
ing materials for users who may see the greatest benefits:
inexperienced end-users. In this paper, we discuss freely
available source code’s usability for end-users. We focus
on one problem area: supporting inexperienced end-users
in selecting relevant code sections from examples they find
interesting. We discuss a user study to evaluate the ade-
quacy of two tools that can support non-programmers in
this code selection task, and highlight design guidelines for
future tools. Finally, we identify further challenges in trans-
forming example code into usable learning materials for all
end-users.

Categories and Subject Descriptors
H.5.2 [Information interfaces and presentation]: Graph-
ical User Interfaces

General Terms
Design, Human Factors, Languages.

Keywords
End-user, Non-programmer, Code Usability, Execution Ex-
plorer, Code Reuse, Looking Glass

1. INTRODUCTION
Transforming the ever-increasing wealth of source code

on the web into useful materials for consumers of any ex-
perience level should demand the attention of software en-
gineers. End-user programmers are increasingly relying on
source code examples found on the web [11, 14, 26]. Un-
fortunately, the majority of these code examples may be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLATEAU October 18, Reno, NV USA
Copyright 2010 ACM 978-1-4503-0547-1/10/08 ...$10.00.

unusable to precisely the users who could benefit the most
from them: inexperienced end-users. The ultimate goal of
research in this area should be to enable programmers of any
experience level to take any code example and effectively use
it to learn new skills, and reduce implementation time.
Freely available source code is an abundant resource on

the web. Any user can find source code snippets in tutori-
als, in API documentation and in the source of web pages
themselves. More code can be found in existing repositories
for both open source code (e.g., [2, 4, 5]) and some end-user
environments (e.g., [21, 22, 7]). Research suggests that end-
user programmers are using these example code resources as
learning aids or customizable examples [10, 14, 26].
There is great potential for end-user programmers of all

experience levels to extend their programming skills with
these resources. However, these code resources will not meet
their full potential if they are unusable. To make effective
use of available code, a user needs to be able to evaluate
an example’s relevance to their interests and select the code
in the example which corresponds to those interests. Tools
that enable efficient evaluation and selection of relevant code
may increase the effectiveness of the estimated 22 million
end-user programmers in the workplace [29] and the grow-
ing communities of recreational end-user programmers (e.g.,
mashups [33], stories and games [22], image tool scripting
[14]) who are without formal training and teach themselves
new programming skills. While this is an important prob-
lem at all skill levels, inexperienced end-user programmers
may see the greatest benefits.
Many problems exist in transforming code examples into

usable learning materials and software support for end-users
may help tackle many issues. Our current focus is on helping
inexperienced end-users find and select code in complete,
executable programs that corresponds to desired program
features. To this end, we are exploring tools that can map
graphical program output to the executing program code.
In this paper, we focus on the challenges of designing soft-

ware solutions to help transform the freely available source
code on the web into usable learning materials for non-
programmers. We first discuss our definition of usable learn-
ing materials relative to inexperienced end-users. We then
explore one space of software support for helping inexperi-
enced end-users select code corresponding to desirable pro-
gram features. We present a user study evaluating the ad-
equacy of two software tools for providing this support.
Based on the study results we present design guidelines for
future tools. Finally we present other major challenges in
making arbitrary code examples usable.

2. EXAMPLE CODE USABILITY
Although many code resources exist on the web, some are

not usable examples for end-users of all experience levels.
We consider a code resource to be a usable example if a
user can evaluate the example’s relevance to their interests
and select the code in the example which corresponds to
their interest. We are particularly interested in inexperi-
enced end-users, and discuss the difficulty of these processes
for inexperienced end-users in the following sections.

2.1 Evaluate Example Relevance
For an example to be usable, a user must first be able

to evaluate whether the example contains any functional-
ity relevant to his or her interests. An end-user’s ability to
determine relevance may be limited by the availability of af-
fordances indicating the example’s purpose, and his or her
ability to read and understand program code. However, for
some tasks, an end-user could evaluate an example’s rele-
vance by executing the example’s code and observing it’s
graphical output.
Affordances indicating an example’s purpose, such as a

description of an example’s functionality from API docu-
mentation or comments in an example program, may help
a user determine an example’s relevance. However, we can-
not assume resources will provide explanations or any other
annotations assisting example evaluation.
A user’s ability to evaluate an example’s relevance is par-

tially dependent on his or her programming experience. For
shorter examples, an experienced programmer could eval-
uate an example’s relevance by simply reading the code,
without needing to execute it. In contrast, an inexperienced
end-user may lack the skills required to use an experienced
programmer’s evaluation process. An end-user may need to
execute the example and observe the example’s output to
evaluate its relevance.
Our observations of end-users indicate that they define

their goals in terms of observable output products, such as
graphical changes, rather than programming constructs or
ideas. End-users can then evaluate an example’s relevance
by determining if an example displays any similarities to
their goal product. For instance, suppose an end-user wants
to enlarge an image on their website when a visitor clicks on
the image. The end-user may be able to learn from another
website which shows an enlarged image in a frame on top of
the page when a user clicks on an image.

2.2 Select Relevant Example Code Sections
A relevant example is usable once a user can select the

code sections relevant to their interest. This requires a user
to read and navigate the code in search of relevant code
sections. With little or no experience programming, an end-
user may be unable to find and select relevant code sections
[15]. This identifies a need for tools that help end-users effi-
ciently make correct connections between interesting output
and its corresponding code.
Research suggests that non-programmers struggle to cor-

rectly attribute given graphical output to the program code
responsible for the output, completing only 41% of selection
tasks correctly [15]. Participants encountered three major
barriers: (1) mapping their descriptions of output actions
to lines or sections of code, (2) fully navigating all relevant
program code, and (3) recognizing language constructs and
their effects on execution flow.

Figure 1: Looking Glass where a user programs by
(1) dragging a method, (2) dropping it into the code
pane, and (3) selecting parameters.

To overcome these barriers, we are exploring tools to help
inexperienced end-users with selection tasks. If we assume
a user relies on graphical output to determine an example’s
relevance, then tools that connect program output to exe-
cuting code may provide adequate selection support. We
refer to this class of tools as execution explorer tools. We
explore the adequacy of these tools in later sections.

2.2.1 Related Work
Output Localization (e.g., feature localization [32], fault

localization [16]) is a well studied area of software engineer-
ing. The goal of localization is to find code responsible for
some functionality [9, 12]. Techniques to support localiza-
tion can use both static (e.g., source code artifacts [23]) and
dynamic (e.g., execution traces [19]) information to provide
software visualizations [16]. Recent work uses program out-
put to help localize responsible code in web pages [25] and
user interfaces [20].
Some fault localization work focuses on end-user debug-

ging. The Whyline [19] enables users to pose “why” and
“why not” questions about program behavior and receive
answers from runtime behavior. The Whyline is designed
for debugging expected output which relies on knowledge of
a program’s construction. Non-programmers exploring un-
familiar code would lack this knowledge. WYSIWYT [27] is
a spreadsheet program that visualizes the “testedness” of a
given cell to help locate possible fault points. Further work
identifies challenges in end-user debugging support [28].

3. EXECUTION EXPLORER TOOLS
To transform arbitrary code examples into usable learn-

ing materials for users of all experience levels, support may
be necessary for inexperienced end-users to select relevant
code sections from an example program. Execution explorer
tools, or tools that map graphical program output to con-
currently executing code, may provide this support.
Multiple examples of execution explorer tools exist (e.g.,

[20, 25]). The most common is a debugger. Using a debug-
ger’s breakpoint and step features, a user can set a break-
point at the beginning of an example, step into new code
sections and step over each line of code to watch for out-
put changes as each line of code executes. These features

Figure 2: The Looking Glass Debugger Interface. (1) Executing threads pane for viewing and selecting
threads, (2) Step Controls for stepping execution, (3) Local Values lists locals in scope, (4) Breakpoints
Panel lists breakpoints (statements outlined in red).

can support finding code responsible for interesting graphi-
cal output. Although novices’ struggles with debuggers for
debugging tasks are known [24], the selection task is simpler
and a debugger may be adequate.
We set out to discover how well execution explorer tools

support non-programmers in the selection process. We in-
vestigated the adequacy of two execution explorer tools for
selection support in a user study of non-programmers. We
describe this user study in the following sections.

4. EVALUATING EXECUTION EXPLORER
TOOLS ADEQUACY FOR SELECTION
SUPPORT

We conducted a user study to evaluate the adequacy of
two execution explorer tools for supporting non-programmers
in selecting the code responsible for graphical output. We
developed two tools to evaluate: a debugger, the most widely
available execution explorer tool, and our Output History
Explorer tool, which was designed to address barriers non-
programmers experienced in these tasks [15].
To maintain consistent programming contexts, we built

both of these tools within the Looking Glass IDE. Looking
Glass is the successor to Storytelling Alice [17]. Like Story-
telling Alice, Looking Glass enables users to create interac-
tive 3D animated stories. Looking Glass uses drag-and-drop
based program construction to prevent users from making
syntax errors (see Figure 1). The environment supports a
range of programming constructs including methods, condi-
tionals, and loops. Parallel execution is also supported and
frequently used in programs [15].

4.1 Debugger
Debugger Design: While debuggers are designed primarily

for fault localization, they can also be used for output fea-
ture localization. Because debuggers are available in many
contexts, we wanted to explore their potential use in helping
inexperienced programmers localize functionality and iden-
tify any barriers preventing their effective use.
To design our debugger, we identified common features

and terminology used in the debuggers present in widely
used novice programming environments (BlueJ [18], JGrasp
[13], DrJava [8]) and professional IDEs used in first courses
(Eclipse [1], NetBeans [6], JCreator [3]).
Debugger Interface: shown in Figure 2.
The Executing Threads Pane (1) displays a fine-grained

thread tree. A user can view all current stack frames with
concurrent threads under their invoking frame. The user
can select a thread and then pause its execution. Clicking
on a paused thread highlights the line of code the thread
was executing when paused in a green box. Other controls
enable a user to pause and play all threads.
Note that this executing thread representation differs from

typical novice debuggers. Typical novice debuggers show
executing thread lists with ambiguous thread names. Our
pilot users struggled to understand and use that representa-
tion. Instead, we chose to show the concurrent stack frames
which enable users to see hiearchical execution information
and make more informed choices about which threads to in-
vestigate. This view to helped non-programmers move on
to using all debugger features.
The Step Controls (2) enable users to step into an execut-

ing method or step over a statement.
The Local Values (3) show a user any local variables in

scope of the selected thread and their current value.
The Breakpoints Panel (4) lists the breakpoints currently

set by the user, which are shown in the code by a red outline.
Clicking a breakpoint in the list shows its location. Users

Figure 3: The Output History Explorer Tool Interface. (1) Time Slider for scrubbing through time, (2)
Scene Viewer shows scene at the selected time, (3) Current Actions Pane shows what actions characters did
at the selected time, (4) Annotated Code View highlights the executing line(s) of code and affords block and
statement playback, and (5) Navigation controls for zooming blocks and methods.

can set breakpoints by right-clicking on statements. The
panel also allows users to remove all breakpoints.

4.2 Output History Explorer Tool
Output History Explorer Tool Design: Previous research

identified three barriers encountered by non-programmers
in finding feature code [15]: (1) mapping output action de-
scriptions to code, (2) fully navigating program code, and
(3) recognizing language constructs’ consequences. We de-
signed the history tool to address these by (1) connecting
output screenshots to the code that executed when the shot
was taken, (2) affording controls for navigating directly to
action code or incrementally zooming into blocks and meth-
ods, and (3) offering replay for individual statements and
construct code blocks.
The history tool dynamically captures screenshots of a

program’s graphical output and a dynamic trace of a run-
ning program. To implement statement replay, the history
tool shows the screenshots captured during the execution
period of a statement. Although it is arguably more robust
to implement replay through substituting previous program
states (e.g., [31]), we chose to use screenshots because it
provided a low-cost approach to evaluating the promise of
output driven selection.
History Tool Interface: Figure 3 shows the History Tool

interface. A user starts the history tool by first running a
program. At any point the user can choose to “stop and
explore” the output and execution history which ends the
program and opens the tool.
The Time Slider (1) enables users to scrub forward and

backward through the program’s recorded history while the
Scene Viewer (2) displays the scene’s appearance at the se-
lected time. A user can scrub though the recorded history

until he or she sees an action of interest in the scene viewer.
The Current Actions Pane (3) shows all methods execut-

ing at the selected time, organized by character. Users ex-
pand a character’s actions to see the individual statements
executed at that time and which methods invoked them.
Users can select and navigate to a statement or method call
in the Code View Pane (4) by clicking on it.
The Code View Pane highlights statements executing at

the selected time in green and offers a play button to replay
the images captured while the selected element executed.
The Navigation Controls (5) offer means to navigate the

code by zooming into and out of block statements and ed-
itable methods. A user can also navigate to a parent invo-
cation, the main run method, and previous selections.

4.3 Methods
We randomly assigned users to a tool and provided a se-

ries of tasks in unfamiliar programs. Our design attempted
to emulate a non-programmer, armed only with documen-
tation, who finds a relevant example and needs to select the
code causing the relevant graphical output. Each task asked
users to mark the first and last line of code responsible for

Table 1: User performance results.

a given output. In some tasks, we distributed the responsi-
ble code throughout the program to simulate multiple code
sections being responsible.
Eighteen adults, university students and staff with no

prior programming experience, participated in the study.

4.4 Results
As shown in Table 1, non-programmers using the history

tool correctly completed 2.7 times as many tasks as users of
the debugger (p < .01). In addition to correctly completing
more tasks, history tool participants had an overall success
rate 81% higher than debugger participants and also tended
to complete tasks more quickly (p = .06). Note that the
task completion time excludes a user from each condition
who did not finish the practice tasks.
To better explain these results we consider the barriers

participants encountered with each tool.

4.4.1 Debugger Barriers
Debugger users experienced two barriers: users misunder-

stood threads, and misinterpreted step over.
Thread Misunderstanding: Misunderstanding of threads,

and the executing threads interface, caused users to make
poor code exploration choices. We did not observe users
recognizing or acknowledging the concept of an execution
stack, the main idea behind our thread tree and similar
components in other debuggers (e.g., [13, 1]). Two users
initially thought threads analogous to lines of code. One ex-
plained threads were “the programming parts that give spe-
cific commands”, and watched for specific code statements,
not invocation threads, to appear.
Step Over Misinterpretation: Five of the nine debugger

users confused the step over function with a “skip over” func-
tion causing some users to not use it. The confusion came
both from language, “I feel when you do step over you’re
skipping over an action,” and from experience, “I think it
just skipped ahead like in the code. . . step over seemed like
a fast forward button to me.” This confusion may have dis-
couraged some users from using step controls.

4.4.2 History Tool Barriers
History tool users encountered two barriers: concurrency

ambiguity, and playback fidelity issues.
Concurrency Ambiguity: Because the history tool’s play

feature relies on screenshots and time tagging, it cannot vi-
sually separate multiple actions that executed concurrently.
Five history tool users struggled with this limitation and
one noted “[I] can’t really differentiate between the one that
was move forward and the one that was turn forward, they
both looked the same.”
Playback Fidelity: Currently, the history tool captures

screenshots as quickly as possible. This can result in a low
frame-rate playback that makes it difficult to recognize short
duration output actions. Five history tool users acknowl-
edged the problem. Three users also had difficulty when the
image displayed in the scene viewer appeared to show an
action was occurring when it had just finished.

4.5 Discussion
Our results suggest that these execution explorer tools

have potential to help inexperienced programmers select code.
Although the history tool performed better, neither is per-
fectly adequate. Addressing these barriers could further im-

prove support for identifying code sections corresponding to
interesting graphical output. We suggest the following for
future execution exploration tools.
1) Do not rely on execution abstractions. Our observations

indicate tree based representations of code execution do not
help non-programmers understand the overall organization
and execution behavior of programs, leading to poor choices
about what parts of the program code to explore.
2) Provide affordances for replaying code elements. His-

tory tool users frequently replayed individual statements
and blocks. While the ability to replay statements and
blocks was typically helpful, users struggled in situations
in which multiple actions concurrently executed. This is a
significant problem for environments where concurrency is
commonly present, such as Looking Glass. Combining the
simplicity of playing statements with the ability to separate
concurrent actions seems a promising direction.
3) Use direct code interactions. Reading the code is the

most common strategy for non-programmers. In the first
practice task most users started by reading the code. Users
later chose to read code when they found code sections likely
related to their search target. This suggests features directly
connected to lines or blocks of code, such as the play feature
of the history tool, may be most natural for users.

5. FURTHER CHALLENGES
Although this paper focused on the challenge of support-

ing inexperienced end-user programmers in selecting exam-
ple code, there are still many challenges in the space of
transforming arbitrary code examples into usable learning
materials. Challenges exist in searching for program exam-
ples, helping inexperienced users efficiently make relevant
selections, and supporting complex selections.

5.1 Searching for Program Examples
The description an inexperienced end-user assigns to graph-

ical output may not clearly map to an example’s implemen-
tation. For instance, a user may want a fading animation
on a web page and search for an example with a “fade”
method. However, the only examples with a fading ani-
mation may use a loop iterating over transparency values
without the word fade present. Concrete output concept
descriptions may prevent end-users from adequately describ-
ing their search target or recognizing relevant code sections.
After querying for an example, a user must evaluate the re-
sulting example to determine their relevance. However, it
is unrealistic to expect a user will execute 30 examples re-
turned from a search engine. Tools making API search more
usable (e.g., [10, 30]) may be useful in this context.

5.2 Helping Users Efficiently Make Relevant
Selections

A primary issue for non-programmers selecting relevant
code section is recognizing that code may be distributed
into functions, classes, or files, and how these code contain-
ers relate to each other when a program is executing. This
problem varies widely as languages and programming envi-
ronments differ for each domain. One solution would be to
provide an interface guiding inexperienced users through a
good search strategy. Tools promoting an understanding of
these concepts, or managing them, can help inexperienced
users make better code exploration decisions when selecting
relevant code.

5.3 Supporting Complex Selections
The code sections relevant to a user’s interest may not

always be a single sequential area of code. It is conceivable
that a user finds interest in code spanning multiple files,
or when using dynamic program tracing, multiple threads.
Further, a user may perceive some code or abstraction of the
code as unnecessary when in fact it is a hidden dependency
of their primary interest. We must support users in making
selection decisions and explaining their implications.
There is great potential for end-user programmers of all

experience levels to extend their programming skills but,
without tools to transform freely available code resources
into usable materials, the potential of these resources code
is unrealized.

6. ACKNOWLEDGMENTS
We thank Micah Herstand for thoughtful discussions and

his help coordinating user studies. The NSF funded this
work through grant #0835438.

7. REFERENCES
[1] Eclipse. http://www.eclipse.org.
[2] Google code search. http://google.com/codesearch.
[3] JCreator. http://jcreator.com/.
[4] Koders open source code search engine.

http://www.koders.com.
[5] Krugle. http://www.krugle.com/.
[6] NetBeans. http://netbeans.org/.
[7] Userscripts.org: Power-ups for your browser.

http://userscripts.org.
[8] E. Allen, R. Cartwright, and B. Stoler. DrJava: a

lightweight pedagogic environment for java. In Proc.
of SIGCSE, pages 137–141, 2002.

[9] T. J. Biggerstaff, B. G. Mitbander, and D. Webster.
The concept assignment problem in program
understanding. In Proc. of ICSE, pages 482–498, 1993.

[10] J. Brandt, M. Dontcheva, M. Weskamp, and S. R.
Klemmer. Example-centric programming: integrating
web search into the development environment. In
Proc. of CHI, pages 513–522, 2010.

[11] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva,
and S. R. Klemmer. Two studies of opportunistic
programming: interleaving web foraging, learning, and
writing code. In Proc. of CHI, pages 1589–1598, 2009.

[12] B. Cleary, C. Exton, J. Buckley, and M. English. An
empirical analysis of information retrieval based
concept location techniques in software
comprehension. Empirical Software Engineering,
14(1):93–130, Feb. 2009.

[13] J. A. Cross and T. D. Hendrix. jGRASP: an
integrated development environment with
visualizations for teaching java in CS1, CS2, and
beyond. J. Comput. Small Coll., 23(2):170–172, 2007.

[14] B. Dorn and M. Guzdial. Graphic designers who
program as informal computer science learners. In
Proc. of ICER, pages 127–134, 2006.

[15] P. Gross and C. Kelleher. Non-programmers
identifying functionality in unfamiliar code: strategies
and barriers. JVLC, 21(5):263–276, Aug. 2010.

[16] J. A. Jones, M. J. Harrold, and J. Stasko.
Visualization of test information to assist fault

localization. In Proc. of ICSE, pages 467–477, 2002.
[17] C. Kelleher, R. Pausch, and S. Kiesler. Storytelling

alice motivates middle school girls to learn computer
programming. In Proc. of CHI, pages 1455–1464.
ACM, 2007.

[18] M. KÃűlling, B. Quig, A. Patterson, and
J. Rosenberg. The BlueJ system and its pedagogy.
Computer Science Education, 13(4):249, 2003.

[19] A. J. Ko and B. A. Myers. Designing the whyline: a
debugging interface for asking questions about
program behavior. In Proc. of CHI, pages 151–158,
2004.

[20] A. J. Ko and B. A. Myers. Finding causes of program
output with the java whyline. In Proc. of CHI, pages
1569–1578, 2009.

[21] G. Leshed, E. M. Haber, T. Matthews, and T. Lau.
CoScripter: automating & sharing how-to knowledge
in the enterprise. In Proc. of CHI, pages 1719–1728,
2008.

[22] J. Maloney, L. Burd, Y. Kafai, N. Rusk, B. Silverman,
and M. Resnick. Scratch: a sneak preview [education].
In Proc. of C5, pages 104–109, 2004.

[23] A. Marcus, V. Rajlich, J. Buchta, M. Petrenko, and
A. Sergeyev. Static techniques for concept location in
object-oriented code. In Proc. of IWPC, pages 33–42,
2005.

[24] R. McCauley, S. Fitzgerald, G. Lewandowski,
L. Murphy, B. Simon, L. Thomas, and C. Zander.
Debugging: a review of the literature from an
educational perspective. Computer Science Education,
18(2):67–92, 2008.

[25] S. Oney and B. Myers. FireCrystal: understanding
interactive behaviors in dynamic web pages. In Proc.
of VL/HCC, pages 105–108, 2009.

[26] M. B. Rosson, J. Ballin, and J. Rode. Who, what, and
how: A survey of informal and professional web
developers. In Proc. of VL/HCC, pages 199–206, 2005.

[27] J. R. Ruthruff and M. Burnett. Six challenges in
supporting end-user debugging. In Proc. of WEUSE,
pages 1–6, 2005.

[28] J. R. Ruthruff, S. Prabhakararao, J. Reichwein,
C. Cook, E. Creswick, and M. Burnett. Interactive,
visual fault localization support for end-user
programmers. JVLC, 16(1-2):3–40, Feb. 2004.

[29] C. Scaffidi, M. Shaw, and B. Myers. Estimating the
numbers of end users and end user programmers. In
Proc. of VL/HCC, pages 207–214, 2005.

[30] J. Stylos and B. Myers. Mica: A Web-Search tool for
finding API components and examples. In Proc. of
VL/HCC, pages 195–202, 2006.

[31] H. Thane, D. Sundmark, J. Huselius, and
A. Pettersson. Replay debugging of real-time systems
using time machines. In Proc. of IPDPS, page 8 pp.,
2003.

[32] N. Wilde and M. C. Scully. Software reconnaissance:
Mapping program features to code. J. of Soft. Maint.:
Research and Practice, 7(1):49–62, 1995.

[33] J. Wong and J. I. Hong. Making mashups with
marmite: towards end-user programming for the web.
In Proc. of CHI, pages 1435–1444, 2007.

